| 研究生: |
阮伯山 Nguyen, Ba-Son |
|---|---|
| 論文名稱: |
石墨烯應用於下世代銅擴散阻障材料及軟性電子之研究 Feasibility of Graphene Layers as a Material for Next Generation Copper Barrier and Flexible Electronics |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 共同指導教授: |
彭洞凊
Perng, Dung-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 外文關鍵詞: | Copper diffusion barrier, copper interconnect, integrated circuits, graphene film, graphene transfer, cyclic bending, bending frequency, void, electrical resistance, air-annealing, non-vacuum, graphene synthesis, oxidization barrier, solid carbon source, low cost, transfer free, cooling rate |
| 相關次數: | 點閱:140 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Graphene, a two-dimensional sheet of carbon atoms, has many extraordinary physical, chemical and electronic properties, and is thus of great interest in many scientific and engineering fields. However, before graphene can be applied at the mass-production scale, there are many practical problems to be overcome. This thesis considers three particular issues involved in the application of graphene to next-generation electronics. The thesis commences by investigating the feasibility of using tri-layer graphene films as a diffusion barrier for the Cu interconnects in integrated circuit (IC) devices. The microstructural, electrical and mechanical properties of graphene on flexible polyimide (PI) substrates under cyclic loading are then examined in order to evaluate the potential of graphene for flexible electrode applications. Finally, a novel method to synthesis large-area graphene for mass-production is proposed.
Modern semiconductor chips are characterized by an ever-increasing number of metallization layers and IC density. Thus, thin diffusion barriers are required in order to minimize the volume ratio of the diffusion barrier to the conducting line. No reliable barrier currently exist for Cu interconnects with a thickness of less than 3 nm or which meet the line resistance scaling requirements specified by the International Technology Roadmap for Semiconductors (ITRS). However, this thesis presents the thinnest ever reported Cu diffusion barrier in the form of a 1-nm-thick graphene tri-layer. The X-ray diffraction patterns and Raman analysis results show that the graphene film remains thermally stable up to temperatures as high as 750°C. Moreover, the transmission electron microscopy results show that no inter-diffusion occurs in the Cu/graphene/Si structure. However, the Raman analyses show that the graphene degrades to a nanocrystalline structure at temperatures higher than 750°C. For example, at 800°C, the perfect carbon structure of graphene is damaged, and thus the ability of graphene to function as a Cu diffusion barrier is seriously impaired.
Preliminary research has suggested that graphene has significant potential for the realization of flexible electronics. However, the literature lacks a detailed examination of the electrical resistance and structural properties of graphene on flexible substrates. Thus, this thesis prepares three kind of multi-layer graphene/polyimide (PI) specimens with three, six and nine graphene layers, respectively. A self-designed bending tester is then used to investigate the electrical properties of the specimens under various bending cycles and bending frequencies. The investigations focus specifically on the electrical resistance of the specimens during bending and the rate of increase of the electrical resistance with the number of bending cycles and bending frequency as a function of the total graphene thickness. The results reveal that the voids formed at the interface between adjacent layers in the graphene/PI specimens during the transfer preparation process increase in size with an increasing number of bending cycles and lead to a disconnection between the graphene layers and the PI substrates. Moreover, the electrical resistance increases with a reducing graphene thickness and an increasing number of bending cycles. For a given graphene thickness, the Raman peak intensity ratio ID/IG value increases exponentially with an increasing number of bending cycles or an increasing bending frequency. In addition, a higher value of ID/IG is accompanied by both a higher rate of increase of the electrical resistance and a higher L1/L2 aspect ratio (where L1 and L2 are the half lengths of the long and short axes, respectively, of the selected-area electron diffraction pattern of graphene). Finally, the tilt angle of the upper layer of graphene in the specimens increases with an increasing graphene thickness for a given bending frequency. Furthermore, for a given graphene thickness, the tilt angle increases as the bending frequency increases.
Various methods are available for the growth of large-area, high-quality graphene on the surfaces of metal catalysts using chemical vapor deposition (CVD) techniques or solid carbon sources. However, these methods require a nearly oxygen free environment which limits their use in mass production. This thesis demonstrates a non-vacuum (air annealing) process for the growth of high-quality graphene films on the surfaces of carbon-added polycrystalline nickel (Ni) film with the assistance of a SiO2 capping layer. Notably, it is shown that the number of graphene layers can be manipulated by controlling the amount of carbon embedded in the Ni film prior to annealing. The Raman analysis results, transmission electron microscopy observations, and electron diffraction patterns of the samples show that graphene films can be grown in air with an oxygen blocking layer and a 10 °C/s cooling rate in an open-vented rapid thermal annealing chamber or an open tube furnace. The quality of the air-annealing grown graphene is comparable to that of commercially available graphene grown using CVD. Notably, the proposed synthesis method is both simpler and cheaper than CVD methods, and is thus far better suited for mass production.
REFERENCES
(1) Xiao, H. Introduction to Semiconductor Manufacturing Technology; Prentice Hall: Upper Saddle River, New Jersey, 2001; pp. 4-49.
(2) Gupta, T. Copper Interconnect Technology; Springer: Watertown, Massachusetts, 2009; pp. 1-65.
(3) International Technology Roadmap for Semiconductors; 2013 Edition - Interconnect, Semiconductor Industry Association, Santa Clara, CA, 2013.
(4) Frankovic, R.; Bernstein, G. H. Electromigration Drift and Threshold in Cu Thin-Film Interconnects. IEEE T. Electron. Dev. 2002, 43, 2233-2239.
(5) IBM Copper Interconnect - The Evolution of Microprocessors. http:// http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/copperchip/ (accessed June 05, 2015).
(6) Theis, T. N. Challenges in the Extension of Hierarchical Wiring Systems, Proceedings of the Symposia on Electrochemical Processing in ULSI Fabrication I and Interconnect and Contact Metallization: Materials, Processes, and Reliability, San Diego, CA, May 4-5, 1998; Andricacos, P. C.; Dukovic, J. O.; Mathad, G. S.; Oleszek, G. M.; Rathore, H. S.; Simpson, C. R. The Electrochemical Society Inc., Pennington, NJ. 1999; pp. 1-11.
(7) International Technology Roadmap for Semiconductors; 2003 Edition - Interconnect, Semiconductor Industry Association, San Fracisco, CA, 2003.
(8) Wong, H. Y.; Mohd Shukor, N. F.; Amin, N. Prospective Development in Diffusion Barrier Layer for Copper Metallization in LSI. Microelectron. J. 2007, 38, 777-782.
(9) Istratov, A. A.; Flink, C.; Weber, E. R. Impact of the Unique Physical Properties of Copper in Silicon on Characterization of Copper Diffusion Barrier. Phys. Stat. Sol. (b) 2000, 222, 261-277.
(10) Wang, M. T.; Lin, Y. C.; Chen, M. C. Barrier Properties of Very Thin Ta and TaN Layers against Copper Diffusion. J. Electrochem. Soc. 1998, 145, 2538-2545.
(11) Bai, G.; Wittenbrock, S.; Ochoa, V.; Villasol, R.; Ciang, C.; Marieb, T.; Gardner, D.; Mu, C.; Fraser, D.; Bohr, M. Effectiveness and Reliability of Metal Diffusion Barriers for Copper Interconnects. Mat. Res. Soc. Symp. Proc., 1996, 403, 501-506.
(12) Braud, F.; Torres, J.; Palleau, J.; Mermet, J. L.; Mouche, M. J. Ti-Diffusion Barrier in Cu- Based Metallization. Appl. Surf. Sci., 1995, 91, 251-256.
(13) Tsai, M. H.; Sun, S. C.; Tsai, C. E.; Chuang, S. H.; Chiu, H. T. Comparison of the Diffusion Barrier Properties of Chemical Vapor Deposited TaN and Sputtered TaN between Cu and Si. J. Appl. Phys. 1996, 79, 6932-6938.
(14) Sun, S.C.; Tsai, M. H.; Chiu, H. T.; Chuang, S. H.; Tsai, C. E. A Comparative Study of CVD TiN and CVD TaN Diffusion Barriers for Copper Interconnection. Electron Devices Meeting, Proceedings of International Electron Devices Meeting, Washington DC. December 10-13, 1995, IEEE, IEDM '95. International, 1995, 461-464.
(15) Chang, C. A.; Hu, C. K. Reaction between Cu and TiSi2 across Different Barrier Layers. Appl. Phys. Lett., 1990, 57, 617-619.
(16) Reid, J. S.; Kolawa, E.; Garland, C. M.; Nicolet, M. A.; Cardone, F.; Gupta, D.; Ruiz, R. P. Amorphous (Mo, Ta, or W)-Si-N Diffusion Barriers for Al Metallizations. J. Appl. Phys. 1996, 79, 1109-1115.
(17) Cao, Z. H.; Hu, K.; Meng, X. K. Diffusion Barrier Properties of Amorphous and Nanocrystalline Ta Films for Cu Interconnects. J. Appl. Phys. 2009, 106, 113513.
(18) Takayama, M.; Noya, A.; Sase, T.; Ohta, A.; Sasaki, K. Properties of TaNx Films as Diffusion Barriers in the Thermally Stable Cu/Si Contact Systems. J. Vac. Sci. Technol. B, 1996, 14, 687-690.
(19) Tsukimoto, S.; Morita, T.; Moriyama, M.; Ito, K.; Mukarami, M. Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films. J. Electron. Mater. 2005, 34, 592-599.
(20) Naeemi, A.; Meindl, J.D. Performance Benchmarking for Graphene Nanoribbon, Carbon Nanotube, and Cu Interconnects. In Interconnect Technology Conference, IITC 2008. International, Proceeding of the 2008 IEEE International Interconnect Technology Conference, Burlingame, California. US, 1-4 June 2008, IEEE Xplore, 183-185.
(21) Wei, B. Q.; Vajtai, R.; and Ajayan P. M. Reliability and Current Carrying Capacity of Carbon Nanotubes. Appl. Phys. Lett. 2001, 79, 1172-1174.
(22) Closed, G. F.; Yasuda, S.; Paul, B.; Fujita, S.; Philip Wong, H. S. A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors. Nano Lett. 2008, 8, 706-709.
(23) Shimizu, H.; Sakoda, K.; Shimogaki,Y. CVD of Cobalt–tungsten Alloy Film as a Novel Copper Diffusion Barrier. Microelectron. Eng. 2013, 106, 91-95.
(24) Wongpiya, R.; Ouyang, J.; Kim, T. R.; Deal, M.; Sinclair, R.; Nishi, Y.; Clemens, B. Amorphous Thin Film TaWSiC as a Diffusion Barrier for Copper Interconnects. Appl. Phys. Lett. 2005, 103, 022104.
(25) Fang, J. S.; Chiu, C. F.; Lin, J. J.; Lin, T. Y.; Chin, T. S. Failure Mechanism of 5nm Thick Ta–Si–C Barrier Layers Against Cu Penetration at 750-800 C. ECS J. Electrochem. Soc. 2011,156, H147-152..
(26) Rawal, S.; Norton, D. P.; Ajmera, H.; Anderson, T. J.; McElwee-White, L. Properties of Ta–Ge–(O)N as a Diffusion Barrier for Cu on Si, Appl. Phys.Lett. 2007, 90, 051913.
(27) Ablett, J. M.; Woicik, J. C.; Tokei, Zs.; List, S.; Dimasi, E. Phase Identification of Self-forming Cu-Mn Based Diffusion Barriers on p-SiOC:H and SiO2 Dielectrics Using x-ray Absorption Fine Structure. Appl. Phys. Lett. 2009, 94, 042112.
(28) Lozano, J. G. Bogan, J.; Casey, P.; McCoy, A. P.; Hughes, G.; Nellist, P. D. Scanning Transmission Electron Microscopy Investigations of Self-forming Diffusion Barrier Formation in Cu(Mn) Alloys on SiO2, APL Mat. 2013, 1, 042105.
(29) Tsukimoto, S.; Onishi, T.; Ito, K.; Konno, M.; Yaguchi, T; Kamino, T.; Murakami, M. Fabrication of Cu(Ti) Alloy Interconnects with Self-Formation of Thin Barrier Metal Layers Using a High-Pressure Annealing Process. J. Electron. Mater. 2007, 36, 1658-1661.
(30) Park, J. H.; Han, D. W.; Kang, Y. J.; Shin, S. R.; Park, J. W. Self-forming Al Oxide Barrier for Nanoscale Cu Interconnects Created by Hybrid Atomic Layer Deposition of Cu-Al Alloy. J. Vac. Sci. Technol. A 2014, 32, 01A131 (1-6).
(31) Shin, J.; Kim, H. -W.; Agapiou, K.; Jones, R. A.; Hwangand, G. S.; Ekerdt J. G. Effects of P on Amorphous Chemical Vapor Deposition Ru-P Alloy Films for Cu Interconnect Liner Applications. J. Vac. Sci. Technol. A 2008, 26, 974-979.
(32) Bost, D. E.; Ekerdt J. G. Chemical Vapor Deposition of Ruthenium-phosphorus Alloy Thin Films: Using Phosphine as the Phosphorus Source. Thin Solid Films 2014, 558, 160-164.
(33) Dubin, V. M.; Schacham-Diamand, Y.; Zhao, B.; Vasudev, P. K.; Ting, C. H. Use of Cobalt Tungsten Phosphide as a Barrier Material for Copper Metallization. U.S. Patent 5, 695, 810, Dec 9, 1997.
(34) Tsai, T. K.; Wu, S. S.; Liu, W. L.; Hsieh, S. H.; Chen, W. J. Electroless CoWP as a Diffusion Barrier between Electroless Copper and Silicon J. Electron. Mater. 2007 ,36, 1408-1414.
(35) Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530-1534.
(36) Song, X.; Hu, J.; Zeng, H. Two-dimensional Semiconductors: Recent Progress and Future Perspectives. J. Mater. Chem. C 2013, 1, 2952-2969.
(37) Polini, M.; Guinea, F.; Lewenstein, M.; Manoharan, H. C.; Pellegrini, V. Artificial Honeycomb Lattices for Electrons, Atoms and Photons Nat. Nanotechnol. 2013, 8, 625-633.
(38) Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials Chem. Rev. 2013, 113, 3766-3798.
(39) McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503.
(40) Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen P. L. Mechanical Properties of Suspended Graphene Sheets. J. Vac. Sci. Technol. B 2007, 25, 2558-2561.
(41) Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335, 442-444.
(42) Dlubak, B.; Martin, M.-B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Blume, R.; Schloegl, R.; Fert, A.; Anane, A.; Hofmann, S.; Seneor, P.; Robertson, J. Graphene-Passivated Nickel as an Oxidation-Resistant Electrode for Spintronics. ACS Nano 2012, 6, 10930-10934.
(43) Kirkland, N.T.; Schiller, T.; Medhekar, N.; Birbilis. N. Exploring Graphene as a Corrosion Protection Barrier. Corros. Sci. 2012, 56, 1-4.
(44) Lee, K. J.; Chandrakasan, A. P.; Kong, J. Breakdown Current Density of CVD-Grown Multilayer Graphene Interconnects. IEEE Electron Device Lett. 2011, 32, 557-559.
(45) Pop, E.; Varshne, V.; Roy, A. K. Thermal Properties of Graphene: Fundamentals and Applications. MRS Bull. 2012, 37, 1273-1281.
(46) Alofi A.; Srivastava, G. P. Thermal Conductivity of Graphene and Graphite. Phys. Rev. B 2013, 87, 115421.
(47) Yeh, C. N.; Raidongia, K.; Shao, J.; Yang, Q. H.; Huang, J. On the Origin of the Stability of Graphene Oxide Membranes in Water. Nat. Chem. 2015, 7, 166-170.
(48) Zhou, S.; Bongiorno, A. Origin of the Chemical and Kinetic Stability of Graphene Oxide. Sci. Rep. 2013, 3, 2484.
(49) Liao, L.; Lin, Y. C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate Nature 2010, 467, 305-308.
(50) Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P.; Jenkins, K. A. Wafer-Scale Graphene Integrated Circuit. Science. 2011, 332, 1294-1297.
(51) Miao, X.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High Efficiency Graphene Solar Cells by Chemical Doping. Nano Lett. 2012, 12, 2745-2750.
(52) McDaniel, H.; Fuke, N.; Makarov, N. S.; Pietryga, J. M.; Klimov, V. I. An Integrated Approach to Realizing High-performance Liquid-junction Quantum Dot Sensitized Solar Cells. Nat. Commun. 2013, 4, 2887.
(53) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652-655.
(54) Chen, X.; Lee, K. J.; Akinwande, D.; Close, G. F.; Yasuda, S.; Paul, B.; Fujita, S.; Kong, J.; Wong, H. S. P. High-speed Graphene Interconnects Monolithically Integrated with CMOS Ring Oscillators Operating at 1.3GHz. 2009 IEEE Int. Electron Devices Meet. 2009, 1, 7-9.
(55) Mohanty, N.; Moore, D.; Xu, Z.; Sreeprasad, T. S.; Nagaraja, A.; Rodriguez, A. A.; Berry, V. Nanotomy-based Production of Transferable and Dispersible Graphene Nanostructures of Controlled Shape and Size. Nat. Commu. 2012, 3, 844.
(56) Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469-4476.
(57) Gustafsson, G.; Cao, Y.; M.Treacy, G.; Klavetter, F.; Colaneri, N.; J.Heeger A.; Flexible Light-emitting Diodes Made from Soluble Conducting Polymers. Nature 1992, 357, 477-479.
(58) Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Someya, T. An Ultra-Lightweight Design for Imperceptible Plastic Electronics. Nature 2013, 499, 458-463.
(59) Viventi, J.; Kim, D. H.; Moss, J. D.; Kim, Y. S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J. L.; Huang, Y. G.; Callans, D. J.; Rogers, J. A.; Litt, B. A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Sci. Transl. Med. 2010, 2, 1- 9.
(60) Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and Mechanics for Stretchable Electronics Science 2010, 327, 1603-1607.
(61) Kim, D.-H.; Lu, N.; Ghaffari, R.; Kim, Y.-S.; Lee, S. P.; Xu, L.; Wu, J.; Kim, R.-H.; Song, J.; Liu, Z.; Viventi, J.; de Graff, B.; Elolampi, B.; Mansour, M.; Slepian, M. J.; Hwang, S.; Moss, J. D.; Won, S.-M.; Huang, Y.; Litt, B.; Rogers, J. A. Materials for Multifunctional Balloon Catheters with Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy. Nat. Mater. 2011, 10, 316-323.
(62) Salvatore, G. A.; Munzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Buthe, L.; Troster, G. Wafer-Scale Design of Lightweight and Transparent Electronics That Wraps around Hairs. Nat. Commun. 2014, 5, 2982.
(63) Kim, R.-H.; Kim, D.-H.; Xiao, J.; Kim, B. H.; Park, S.-I.; Panilaitis, B.; Ghaffari, R.; Yao, J.; Li, M.; Liu, Z.; Malyarchuk, V.; Kim, D. G.; Le, A.-P.; Nuzzo, R. G.; Kaplan, D. L.; Omenetto, F. G.; Huang, Y.; Kang, Z.; Rogers, J. A. Waterproof AlInGaP Optoelectronics on Stretchable Substrates with Applications in Biomedicine and Robotics. Nat. Mater. 2010, 9, 929-937.
(64) Melzer, M.; Makarov, D.; Calvimontes, A.; Karnaushenko, D.; Baunack, S.; Kaltofen, R.; Mei, Y.; Schmidt, O. G. Stretchable Magnetoelectronics. Nano Lett. 2011, 11, 2522-2526.
(65) Melzer, M.; Lin, G.; Makarov, D.; Schmidt, O. G. Stretchable Spin Valves on Elastomer Membranes by Predetermined Periodic Fracture and Random Wrinkling. Adv. Mater. 2012, 24, 6468-6472.
(66) Karnaushenko, D.; Makarov, D.; Yan, C.; Streubel, R.; Schmidt, O. G. Printable Giant Magnetoresistive Devices. Adv. Mater. 2012, 24, 4518-4522.
(67) WE-Heraeus-Seminar: Flexible, Stretchable and Printable High Performance Electronics http://www.weheraeustiftung.de/index.php?option=com_icagenda&view=list&layout=event&id=109&Itemid=547 (accessed June 05, 2015).
(68) Ahn, J. H.; Caironi, M.; Baeg, K. J.; Chen, Z.; Briseno, A. L.; Cho, J. H.; Collela, N. S.; Han, D.; D’Angelo, P.; Hoath, S. D.; Facchetti, A.; Hutchings, I. M.; Iannotta, S.; Jang, H.; Jung, S.; Kim, E. H.; Kim, Y. H.; Kang, M. S.; Kang, S. J.; Kim, H.; Lee, J.; Kim, M. S.; Lee, S. H.; Lesnyak, V.; Li, H.; Liu, C.; Lee, W. J.; MacDonald W. A.; Lee, W.; Manna, L.; Martin, G. D.; Noh, Y. Y.; Romeo, A.; Park, S. K.; Sekitani, T.; Park, S.; Reyes-Martinez, M. A.; Someya, T.; Sung, S.; Takenobu, T.; Song, C. K.; Tarabella, G.; Usta, H.; Ryu, G. S.; Xu, Y.; Yoo, S.; Yoon, M. H.; Yokota, T. Large Area and Flexible Electronics, Editor Caironi, M.; Editor Noh, Y. Y. Wiley-VCH Verlag GmbH & Co. KGaA: Boschstr. 12, 69469 Weinheim, Germany, 2015, pp XXIII-XXVI.
(69) Zheng, J. Failure Mechanics of Functional Nanostructures in Advanced Technologies. Doctor of Philosophy Dissertation, University of Maryland, Collage Park, Maryland MD20742, United States of America, 2014.
(70) Rasool, H. I.; Ophus, C.; Klug, W. S.; Zettl, A.; Gimzewski, J. K. Measurement of the Intrinsic Strength of Crystalline and Polycrystalline Graphene Nat. Commun. 2013, 4, 2811.
(71) Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat Graphene. Nature 2009, 462, 339-341.
(72) Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. Advanced Mechanical Properties of Graphene Paper. J. Appl. Phys. 2011, 109, 014306.
(73) Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic Transport in Two-dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407-470.
(74) Kotov, V. N.; Uchoa, B.; Pereira, V. M.; Guinea, F.; Castro Neto, A. H. Electron-electron Interactions in Graphene: Current Status and Perspectives. Rev. Mod. Phys. 2012, 84, 1067-1125.
(75) Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 2013, 340, 1427-1430.
(76) Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A. Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent Conducting Electrodes. ACS Nano 2010, 4, 3839-3844.
(77) Laitinen, A.; Oksanen, M.; Fay, A.; Cox, D.; Tomi, M.; Virtanen, P.; Hakonen, P. J. Electron-Phonon Coupling in Suspended Graphene: Supercollisions by Ripples. Nano Lett. 2014, 14, 3009-3013.
(78) Bao, W.; Jing, L.; Lee, Y.; Velasco, J., , Jr.; Kratz, P.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S. B.; Smirnov, D.; Koshino, M.; McCann, E.; Bockrath, M.; Lau, C. N. Stacking-Dependent Band Gap and Quantum Transport in Trilayer Graphene. Nat. Phys. 2011, 948-952.
(79) Li, N.; Chen, Z.; Ren, W.; Li, F.; Cheng, H.-M. Flexible Graphene-based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates. Proc. Natl. Acad. Sci U.S.A. 2012, 109, 17360-17365.
(80) Liao, L.; Lin, Y. C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature 2010, 467, 305-308.
(81) Pierantoni, L.; Mencarelli, D.; Coccetti, F.; Graphene-based Wireless Communications Systems: Analysis of the EM-quantum Transport of Coupled Nano-patch Antennas. Proceedings of the Wireless Power Transfer WPT 2013, Perugia, Italy, May 15-16, 2013, IEEE, pp 66-68.
(82) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
(83) Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balafrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Özyilmaz, B.; Ahn, J. H.; Hong, B. H.; Lijima, S. Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
(84) Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S. Graphene-Silica Composite Thin Films as Transparent Conductors. Nano Lett. 2007, 7, 1888-1892.
(85) Bae, S. H.; Lee, Y.; Sharma, B. K.; Lee, H. J.; Kim, H. J.; Ahn, J. H. Graphene-Based Transparent Strain Sensor. Carbon 2013, 51, 236-242.
(86) Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. W.; Ha, J. S. Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam. Adv. Funct. Mater. 2015, accepted.
(87) Gao, T.; Li, Z.; Huang, P.-S; Shenoy, G. J.; Parobek, D.; Tan, S.; Lee, J.;-K.; Liu, H.; Leu, P. W. Hierarchical Graphene/Metal Grid Structures for Stable, Flexible Transparent Conductors. ACS Nano, 2015, 9, 5440-5446.
(88) Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S.et al. Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Lett. 2011, 11, 3881-3886.
(89) Lee, S.-K.; Rana, K.; Ahn, J.-H. Graphene Films for Flexible Organic and Energy Storage Devices. J. Phys. Chem. Lett. 2013, 4, 831-841.
(90) Nguyen, P.; Berry, V. Graphene Interfaced with Biological Cells: Opportunities and Challenges. J. Phys. Chem. Lett. 2012, 3, 1024-1029.
(91) Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Bae, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W. Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode. Nat. Photonics 2012, 6, 105-110.
(92) Secor, E. B.; Prabhumirashi, P. L.; Puntambekar, K.; Geier, M. L.; Hersam, M. C. Inkjet Printing of High Conductivity, Flexible Graphene Patterns. J. Phys. Chem. Lett. 2013, 4, 1347-1351.
(93) Secor, E. B.; Lim, S.; Zhang, H.; Frisbie, C. D.; Francis, L. F.; Hersam, M. C. Gravure Printing of Graphene for Large-Area Flexible Electronics. Adv. Mater. 2014, 26, 4533-4538.
(94) Gao, Y.; Shi, W.; Wang, W.; Leng, Y.; Zhao, Y. Inkjet Printing Patterns of Highly Conductive Pristine Graphene on Flexible Substrates. Ind. Eng. Chem. Res. 2014, 53, 16777-16784.
(95) Hyun, W. J.; Secor, E. B.; Hersam, M. C.; Frisbie, C. D.; Francis, L. F.High-Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics. Adv. Mater. 2015, 27, 109-115.
(96) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based Composite Materials. Nature 2006, 442, 282-286
(97) Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
(98) Cai, M.; Thorpe, D.; Adamson, D. H.; Schniepp, H. C. Methods of Graphite Exfoliation. J. Mater. Chem. 2012, 22, 24992-25002.
(99) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield Production of Graphene by Liquid-phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563-568.
(100) Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T. Towards Wafer-size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nat. Mater. 2009, 8, 203-207.
(101) Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayo, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 2006, 312, 1191-1196.
(102) Coraux, J.; N’Diaye, A. T.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; Heringdorf, F.; van Gastei, R.; Poelsema, B.; Michely, T. Growth of Graphene on Ir (111). New J. Phys. 2009, 11, 023006.
(103) Liu, M.; Li, Y.; Chen, P.; Sun, J.; Ma, D.; Li, Q.; Gao, T.; Gao, Y.; Cheng, Z.; Qiu, X.; Fang, Y.; Zhang, Y.; Liu, Z. Quasi-Freestanding Monolayer Heterostructure of Graphene and Hexagonal Boron Nitride on Ir(111) with a Zigzag Boundary. Nano Lett. 2014, 14, 6342-6347.
(104) Pletikosic, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Dirac Cones and Minigaps for Graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 5056808.
(105) Sutter P. W.; Flege J.I.; Sutter E. A. Epitaxial Graphene on Ruthenium. Nat. Mater. 2008, 7, 406-411.
(106) Pan, Y.; Zhang, H.; Shi, D.; Sun, J.; Du, S.; Liu, F.; Gao, H. J. Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001). Adv. Mater. 2009, 21, 2777-2780.
(107) Obraztsov, A. N. Chemical Vapour Deposition: Making Graphene on a Large Scale. Nat. Nanotechnol. 2009, 4, 212-213.
(108) Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces Nano Lett. 2010, 10, 1542- 1548.
(109) Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano 2012, 6, 9110-9117.
(110) Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst Nano Lett. 2010, 10, 4128-4133.
(111) Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H.-J.; Yoon, S.-M.; Choi, J.-Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of Large‐Area Graphene Layers on Poly‐Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 2009, 21, 2328-2333.
(112) Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S., Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C.; Liang, C. T.; Chen, C. W. Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Adv. Mater. 2012, 25, 4521-4526.
(113) Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties Nano Lett. 2009, 9, 1752-1758.
(114) Yan, Z.; Peng, Z.; Tour, J. M. Chemical Vapor Deposition of Graphene Single Crystals Acc. Chem. Res. 2014, 47, 1327-1337.
(115) Asif, M.; Tan, Y.; Pan, L.; Li, J.; Rashad, M.; Usman, M. Thickness Controlled Water Vapors Assisted Growth of Multilayer Graphene by Ambient Pressure Chemical Vapor Deposition J. Phys. Chem. C 2015, 119, 3079-3089.
(116) Hayashi, K.; Yamada, A.; Sato, S.; Yokoyama, N. Crystallographic Characterization and Control of Domain Structure within Individual Graphene Islands J. Phys. Chem. C 2015, 119, 4286-4293.
(117) Ogawa, Y.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.; Mizuno, S.; Hibino, H.; Ago, H. Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films. J. Phys. Chem. Lett. 2012, 3, 219-226.
(118) Zhao, L.; Rim, K. T.; Zhou, H.; He, R.; Heinz, T. F.; Pinczuk, A.; Flynn, G. W.; Pasupathy, A. N.Influence of Copper Crystal Surface on the CVD Growth of Large Area Monolayer Graphene. Solid State Commun. 2011, 151, 509-513.
(119) Rasool, H. I.; Song, E. B.; Mecklenburg, M.; Regan, B. C.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals. J. Am. Chem. Soc. 2011, 133, 12536– 12543.
(120) Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure. J. Phys. Chem. C 2013, 117, 18919-18926.
(121) Fang, W.; Hsu, A. L.; Song, Y.; Birdwell, A. G.; Amani, M.; Dubey, M.; Dresselhaus, M. S.; Palacios, T.; Kong, J. Asymmetric Growth of Bilayer Graphene on Copper Enclosures using Low-Pressure Chemical Vapor Deposition. ACS Nano 2014, 8, 6491-6499
(122) Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of Graphene from Solid Carbon Sources. Nature 2010, 468, 549-552.
(123) Byun, S.-J.; Lim, H.; Shin, G.-Y.; Han, T.-H.; Oh, S. H.; Ahn, J.-H.; Choi, H. C.; Lee, T.-W. Graphenes Converted from Polymers J. Phys. Chem. Lett. 2011, 2, 493- 497.
(124) Jing, H.; Min, M.; Seo, S.; Lu, B.; Yoon, Y.; Lee, S. M.; Hwang, E.; Lee, H. Non-metal Catalytic Synthesis of Graphene from a Polythiophene Monolayer on Silicon Dioxide, Carbon, 2015, 86, 272-278.
(125) Hofrichter, J.; Szafranek, B.; Otto, M.; Echtermeyer, T. J.; Baus, M.; Majerus, A.; Geringer, V.; Ramsteiner, M.; Kurz, H. Synthesis of Graphene on Silicon Dioxide by a Solid Carbon Source. Nano Lett. 2010, 10, 36-42.
(126) Cooil, S. P.; Song, F.; Williams, G. T.; Roberts, O. R.; Langstaff, D. P.; Jørgensen, B.; Høydalsvik, K.; Breiby, D. W.; Wahlström, E.; Evans, D. A.; Wells, J. W. Iron-mediated Growth of Epitaxial Graphene on SiC and Diamond. Carbon 2012, 50, 5099-5105.
(127) García, J. M.; He, R.; Jiang, M. P.; Kim, P.; Pfeiffer, L. N.; Pinczuk, A. Multilayer Graphene Grown by Precipitation upon Cooling of Nickel on Diamond. Carbon 2011, 49, 1006-1012.
(128) Garaj, S.; Hubbard, W.; Golovchenko, J. A. Graphene Synthesis by Ion Implantation Appl. Phys. Lett. 2010, 97, 183103.
(129) The International Technology Roadmap for Semiconductors 2011 Edition-Interconnect, p.7, Santa Clara, CA: Semiconductor Ind. Assoc.
(130) Li, J.; Ye, Q.; Cassell, A.; Ng, H. T.; Stevens, R.; Han, J.; Meyyappan, M. Bottom-up Approach for Carbon Nanotube Interconnects, Appl. Phys. Lett., 2003, 82, 2491-2493.
(131) Morgen, M.; Todd, E. R.; Zhao, J.-H.; Hu, C.; Cho, T.; Ho P. S. Low Dielectric Constant Materials for ULSI Interconnects. Annu. Rev. Mater. Sci. 2000, 30, 645-680.
(132) Kreupl, F.; Graham, A. P.; Duesberg, G. S.; Steinhögl, W.; Liebau, M.; Unger, E.; Hönlein, W. Carbon Nanotubes in Interconnect Applications. Microelectron. Eng. 2002, 64, 399-408.
(133) Wang, H.M.; Wu, Y.H.; Ni, Z.H.; Shen, Z.X. Electronic Transport and Layer Engineering in Multilayer Graphene Structures. Appl. Phys. Lett. 2008, 92, 053504.
(134) Nihei, M.; Kondo, D.; Kawabata, A.; Sato, S.; Shioya, H.; Sakaue, M.; Iwai, T.; Ohfuti, M.; Awano, Y. Low-resistance Multi-walled Carbon Nanotube Vias with Parallel Channel Conduction of Inner Shells. Interconnect Technology Conference, Proceedings of the IEEE 2005 International , Burlingame, CA, USA June 6-8, 2005, 234-236, IEEE, 2005.
(135) Shimizu, H.; Kumamoto, A.; Shima, K.; Kobayashi, Y.; Momose, T.; Nogami, T.; Shimogaki, Y. CVD and ALD Co(W) Films Using Amidinato Precursors as a Single-Layered Barrier/Liner for Next-Generation Cu-Interconnects. ECS J. Solid State Sci. Tech. 2013, 2, 311-315.
(136) Lin, T.; Cheng, H.; Chin, T.; Chiu, C.; Fang, J. S. 5-nm-thick TaSiC Amorphous Films Stable up to 750oC as a Diffusion Barrier for Copper Metallization. Appl. Phys. Lett. 2007, 91, 152908.
(137) Rawal, S.; Norton, D. P.; Anderson, T. J.; McElwee-White, L. Properties of W-Ge-N as a Diffusion Barrier Material for Cu. Appl. Phys. Lett. 2005, 87, 111902.
(138) Koike, J.; Wada, M. Self-forming Diffusion Barrier Layer in Cu-Mn Alloy Metallization. Appl. Phys. Lett. 2005, 87, 041911.
(139) Frederic, M. J.; Ramanath, G. Kinetics of Interfacial Reaction in Cu-Mg Alloy Films on SiO2. J. Appl. Phys. 2004, 95, 363-366.
(140) Perng, D. C.; Yeh, J. B.; Hsu, K. C. Tsai, S.W. Self-forming AlOx Layer as Cu Diffusion Barrier on Porous Low-k Film. Thin Solid Films 2010, 518, 1648-1652.
(141) Henderson, L. B.; Ekerdt, J. G. Time-to-failure Analysis of 5 nm Amorphous Ru(P) as a Copper Diffusion Barrier. Thin Solid Films 2009, 517, 1645-1649.
(142) Perng, D. C.; Hsu, K. C.; Tsai, S. W.; Yeh, J. B. Thermal and Electrical Properties of PVD Ru(P) Film as Copper Diffusion Barrier. Microelectron. Eng. 2010, 87, 365-369.
(143) Decorps, T.; Haumesser, P. H.; Olivier, S.; Roule, A.; Joulaud, M.; Pollet, O.; Avale, X.; Passemard, G. Electroless deposition of CoWP: Material Characterization and Process Optimization on 300 mm Wafers. Microelectron. Eng. 2006, 83, 2082-2087.
(144) Kohn, A.; Eizenberg, M.; Shacham-Diamand, Y.; Sverdlov, Y. Characterization of Electroless Deposited Co(W,P) Thin Films for Encapsulation of Copper Metallization Mat. Sci. Eng. A 2001, 302, 18-25.
(145) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192-200.
(146) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183-191.
(147) Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10, 4285-4294.
(148) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov K. S.; Geim, A. K. The Electronics Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109-162.
(149) Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications Small 2011, 7, 1876-1902.
(150) Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.
(151) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458-2462.
(152) Chen, S. S.; Brown, L. L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J. Y.; Park, J.; Ruoff, R. S. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321-1327.
(153) Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based Electronics. Nat. Nanotechnol. 2007, 2, 605-615.
(154) Murali, R.; Yang, Y.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown Current Density of Graphene Nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.
(155) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902-907.
(156) Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L.; Morozov, S. V.; Gleeson, H. F.; Hill, E W.; Geim, A. K.; Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8, 1704-1708.
(157) Wang, X.; Zhi, L. J.; Mullen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323-327.
(158) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, S. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706-710.
(159) Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662.
(160) Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P.; Jenkins, K. A. Wafer-Scale Graphene Integrated Circuit. Science 2011, 332, 1294-1297.
(161) Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A Graphene-based Broadband Optical Modulator. Nature 2011, 474, 64-67.
(162) Mohanty, N.; Moore, D.; Xu, Z.; Sreeprasad, T. S.; Nagaraja, A.; Rodriguez, A. A.; Berry, V. Nanotomy-based Production of Transferable and Dispersible Graphene Nanostructures of Controlled Shape and Size. Nat. Commun. 2012, 3, 844.
(163) Xu, M. S. Xu; Fujita D.; Hanagata. N. Perspectives and Challenges of Emerging Single-Molecule DNA Sequencing Technologies. Small 2009, 5, 2638-2649.
(164) Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.D.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314.
(165) Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.W.; Velamakanni, A.; Zhu, Y.; Fu, L. F.; Vogel, E. M.; Voelkl, E.; Colombo, L. Ruoff, R. S. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Lett. 2010, 10, 4328-4334.
(166) Gao, L.; Ren, W.; Zhao, J.; Ma, L. P.; Chen, Z.; Cheng, H. M. Efficient Growth of High-Quality Graphene films on Cu foils by Ambient Pressure Chemical Vapor Deposition. Appl. Phys. Lett. 2010, 97, 183109.
(167) Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R.; Li, L. J. Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Lett. 2011, 11, 3612-3616.
(168) Peng, Z. W.; Yan, Z.; Sun, Z. Z.; Tour, J. M. Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel. ACS Nano 2011, 5, 8241-8247.
(169) Wang, Y.; Cao, F.; Song Z.; Zhan, C. H. Application of Zr-Si Film as Diffusion Barrier in Cu Metallization. J. Electrochem. Solid-State Lett. 2007, 10, H299-H301.
(170) B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addision-Wesley, Reading, MA, 1978,
(171) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
(172) Cuong, T. V.; Pham, V. H.; Tran, Q. T.; Hahn, S. H.; Chung, J. S.; Shin, E. W.; Kim, E. J. Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett. 2010, 64, 399-401.
(173) Roy, S.S.; Arnold, M.S. Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering. Adv. Funct. Mater. 2013, 23, 3638-3644.
(174) Currie, M.; Caldwell, J. D.; Bezates, F. J.; Robinson, J.; Anderson. T.; Chun, H.; Tadjer, M. Quantifying Pulsed Laser Induced Damage to Graphene. Appl. Phys. Lett. 2011, 99, 211909(1-3).
(175) Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927-9933.
(176) Coraux, J.; N'Diaye, A. T.; Busse C.; Michely, T. Structural Coherency of Graphene on Ir(111). Nano Lett. 2008, 8, 565-570.
(177) Lee, Y. B.; Bae, S. K.; Jang, H.; Jang, S. K.; Zhu, S. E. Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett. 2010, 10, 490-493.
(178) Reina, A.; Son, H. B.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. J. Phys. Chem. C 2008, 112, 17741-17744.
(179) Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L. Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359-4363.
(180) Zhang, Y.; Zhang, L.; Zhou, C. Review of Chemical Vapor Deposition of Graphene and Related Applications Acc. Chem. Res. 2013, 46, 2329-2339.
(181) Yen, W. C.; Chen, Y. Z.; Yeh, C. H.; He, J. H.; Chiu, P. W.; Chueh, Y. L. Direct Growth of Self-crystallized Graphene and Graphite Nanoballs with Ni Vapor-assisted Growth: From Controllable Growth to Material Characterization. Sci. Rep. 2013, 4, 4739.
(182) Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; Ramanarayan, H.; Magnuson, C. W.; Tutuc, E.; Yakobson, B. I.; McCarty, K. F.; Zhang, Y. W.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R. S. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 2013, 342, 720-723.
(183) Lee, S. H.; Lee, K. H.; Zhong, Z. H. Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. Nano Lett. 2010, 10, 4702-4707.
(184) Polsen, E. S.; McNerny, D.Q.; Viswanath, B.; Pattinson, S. W.; John Hart, A. Direct High-speed Roll-to-Roll Manufacturing of Graphene Using a Concentric Tube CVD Reactor. Sci. Rep. 2015, 5, 10257.
(185) Tsen, A.W.; Brown, L.; Levendorf, M. P.; Ghahari, F.; Huang, P. Y.; Havener, R. W.; Ruiz-Vargas, C. S.; Muller, D. A.; Kim. P.; Park, J. Tailoring Electrical Transport across Grain Boundaries in Polycrystalline Graphene. Science 2012, 336, 1143-1146.
(186) Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, S. F.; Bao, Z. Selective Metal Deposition at Graphene Line Defects by Atomic Layer Deposition. Nat. Commun. 2014, 5, 4781.
(187) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Physics Reports 2009, 473, 51-87.
(188) Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett. 2007, 7, 238-242.
(189) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401.
(190) Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.; Shen, Z.; Thong, J. T. Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman spectroscopy. Small 2010, 6, 195-200.
(191) Scarpa, F.; Adhikari, S.; Srikantha Phani, A. Effective Elastic Mechanical Properties of Single Layer Graphene Sheets. Nanotechnology 2009, 20, 065709.
(192) Ni Z. H.; Yu T.; Lu Y. H.; Wang Y. Y.; Feng Y. P.; Shen Z. X. Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. ACS Nano 2008, 2, 2301-2305.
(193) Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; nd Ferrari A. C. Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen Parameters, and Sample Orientation. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 205433.
(194) Yu, T.; Ni, Z. H.; Du, C. L.; You, Y. M.; Wang, Y. Y.; Shen, Z. X. Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect. J. Phys. Chem. C 2008, 112, 12602-12605.
(195) Cranford, S. W.; Buehler, M. J. Mechanical Properties of Graphyne. Carbon 2011, 49, 4111- 4121.
(196) Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Dislocation-Driven Deformations in Graphene. Science 2012, 337, 209-212.
(197) Frank, O.; Vejpravova, J.; Kavan, L.; Kalbac, M. Raman Spectroscopy Investigation of Defect Occurrence in Graphene Grown on Copper Single Crystals. Phys. Status Solidi B 2013, 250, 2497-2766.
(198) Polák,J.; Sauzay, M. Growth of Extrusions in Localized Cyclic Plastic Straining. Mater. Sci. Eng. A 2009, 500, 122-129.
(199) Qi, Z. J.; Rodríguez-Manzo, J. A.; Botello-Méndez, A. R.; Hong, S. J.; Stach, E. A.; Park, Y. W.; Charlier, J.-C.; Drndić, M.; Johnson, A. T. C. Correlating Atomic Structure and Transport in Suspended Graphene Nanoribbons. Nano Lett. 2014, 14, 4238-4244.
(200) Li, T. C.; Han, C. F.; Chen, K. T.; Lin, J. F. Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain Via Cyclic Bending Tests. J. Disp. Technol. 2013, 9, 577-585.
(201) Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers. Nano Lett. 2009, 9, 346-352.
(202) Geim A. K.; Novoselov K. S. The Rise of Graphene. Nature 2007, 6, 183-191.
(203) Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A.C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611-622.
(204) Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene Plasmonics. Nat. Photonics 2012, 6, 749-758.
(205) Schwierz, F. Graphene Transistors, Nat. nanotechnol. 2010, 5, 487-496.
(206) Park, S.Y.; Floresca, H. C.; Suh, Y. J.; Kim. M. J. Electron Microscopy Analyses of Natural and Highly Oriented Pyrolytic Graphites and The Mechanically Exfoliated Graphenes Produced From Them. Carbon 2010, 48, 7977-804.
(207) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi A. Y.; Feng. R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.
(208) Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191-1196.
(209) Kunc, J.; Hu, Y.; Palmer, J.; Berger, C.; de Heer, W. A. A Method to Extract Pure Raman Spectrum of Epitaxial Graphene on SiC. Appl. Phys. Lett. 2013, 103, 201911.
(210) Fukidome, H.; Kawai, Y.; Fromm, F.; Kotsugi, M.; Handa, H.; Ide, T.; Ohkouchi, T.; Miyashita, H.; Enta, Y.; Kinoshita, T.; Seyller, Th.; Suemitsu, M. Precise Control of Epitaxy of Graphene by Microfabricating SiC Substrate. Appl. Phys. Lett. 2012, 101, 041605.
(211) de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large Area and Structured Epitaxial Graphene Produced by Confinement Controlled Sublimation of Silicon Carbide. Proc. Natl. Acad. Sci. U. S. A.. 2011, 108, 16900–16905.
(212) Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L. I.; Zakharov, A. A.; Balasubramanian, T. Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 245403.
(213) Sutter P. W. Epitaxial Graphene: How Silicon Leaves the Scene Nat. Mater. 2009, 8, 171-172.
(214) Zeller, P.; Speck, F.; Weinl, M.; Ostler, M.; Schreck, M.; Seyller, T.; Wintterlin, J. Healing of Graphene on Single Crystalline Ni(111) Films. App. Phy. Lett. 2014, 105, 191612.
(215) Usachov, D.; Dobrotvorskii, A. M.; Varykhalov, A.; Rader, O.; Gudat, W.; Shikin, A. M.; Adamchuk, V. K. Experimental and Theoretical Study of the Morphology of Commensurate and Incommensurate Graphene Layers on Ni Single-Crystal Surfaces Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 085403.
(216) N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely T. Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501..
(217) Zhang, H.; Fu, Q.; Cui, Y.; Tan, D.; Bao, X. Growth Mechanism of Graphene on Ru(0001) and O2 Adsorption on the Graphene/Ru(0001) Surface. J. Phys. Chem. C 2009, 113, 8296-8301.
(218) Merino, P.; Svec, M.; Pinardi, A. L.; Otero, G.; Martin-Gago, J. A. Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces ACS Nano 2011, 5, 5627-5634.
(219) Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F.Graphene Nucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge J. Am. Chem. Soc. 2011, 133, 5009-5015.
(220) Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E.M.; Colombo, L.; Ruoff, R.S. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. J. Am. Chem. Soc. 2011, 133, 2816-2819.
(221) Won, S.; Hwangbo, Y.; Lee, S.-K.; Kim, K.-S.; Kim, K.-S.; Lee, S.-M.; Lee, H.-J.; Ahn, J.-H.; Kim, J.-H.; Lee, S.-B. Double-Layer CVD Graphene as Stretchable Transparent Electrodes Nanoscale 2014, 6, 6057-6064.
(222) Gao, J.; Yuan, Q.; Hu, H.; Zhao, J.; Ding, F. Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface. J. Phys. Chem. C 2011, 115, 17695-17703.
(223) Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene ACS Nano 2011, 5, 6069-6076.
(224) Tang, B.; Gao, H.; Hu, G. Growth Mechanism and Influences from Kinetic Factors on Carbon Materials with Cu and Silica Substrates during Atmospheric Pressure Chemical Vapor Deposition. J. Phys. Chem. C 2013, 117, 25175-25184.
(225) Zurutuza, A.; Marinelli,C. Challenges and Opportunities in Graphene Commercialization. Nat. nanotechnol. 2014, 9, 730-734.
(226) Juang, Z. Y.; Wu, C. Y.; Lu, A. Y.; Su, C. Y.; Leou K. C.; Chen, F. R.; Stai, C. H. Graphene Synthesis by Chemical Vapor Deposition and Transfer by a Roll-to-Roll Process. Carbon 2010; 48, 3169-3174.
(227) Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y.; Murakami, Y.; Hobara, D. Production of a 100-m-Long High-quality Graphene Transparent Conductive Film by Roll-to-roll Chemical Vapor Deposition and Transfer Process. Appl. Phys. Lett. 2013, 102, 023112.
(228) Ago, H.; Ogawa, Y.; Tsuji, M.; Mizuno, S.; Hibino, H. Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene J. Phys. Chem. Lett. 2012, 3, 2228- 2236.
(229) Yu, Q.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; Chung T. F.; Peng, P.; Guisinger, N. P.; Stach, E. A.; Bao, J.; Pei, S. S.; Chen, Y. P. Control and Characterization of Individual Grains and Grain Boundaries in Graphene Growth by Chemical Vapour Deposition. Nat. Mater. 2011, 10, 443-449.
(230) Eres, G.; Regmi, M.; Rouleau, C. M.; Chen, J.; Ivanov, I. N.; Puretzky, A. A.; Geohegan, D. B. Cooperative Island Growth of Large-Area Single-Crystal Graphene on Copper Using Chemical Vapor Deposition. ACS Nano 2014, 8, 5657-5669.
(231) Robertson, A. W.; Warner, J. H. Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils. Nano Lett. 2011, 11, 1182-1189.
(232) Yao, Y.; Wong, C. P. Monolayer Graphene Growth using Additional Etching Process in Atmospheric Pressure Chemical Vapor Deposition. Carbon, 2012, 50, 5203-5209.
(233) Vlassiouk, I.; Fulvio, P.; Mayer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large Scale Atmospheric Pressure Chemical Vapor Deposition of Graphene. Carbon 2013, 54, 58-67.
(234) Liu, L.; Zhou, H.; Cheng, R.; Chen, Y.; Lin, Y. C.; Qu, Y.; Bai, J.; Ivanov, I. A.; Liu, G.; Huang, Y.; Duan, X. A Systematic Study of Atmospheric Pressure Chemical Vapor Deposition Growth of Large-area Monolayer Graphene. J. Mater. Chem. 2012, 22, 1498-1503.
(235) Somekh, M.; Shawat, E.; Nessim, G. D. Fully Reproducible, Low-temperature Synthesis of High-quality, Few-layer Graphene on Nickel via Preheating of Gas Precursors Using Atmospheric Pressure Chemical Vapor Deposition. J. Mater. Chem. A 2014, 2, 19750-19758.
(236) Papon, R.; Kalita, G.; Sharma, S.; Shinde, S. M.; Vishwakarma, R., Tanemura, M. Controlling Single and Few-layer Graphene Crystals Growth in a Solid Carbon Source Based Chemical Vapor Deposition. Appl. Phys. Lett. 2014, 105, 133103.
(237) Weatherup, R. S.; Baehtz, C; Dlubak, B.; Bayer, B. C.; Kidambi, P. R.; Blume, R.; Schoegl, R.; Hofmann, S. Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources. Nano Lett. 2013, 13, 4624-4631.
(238) Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling Nano Letters 2009, 9, 4268-4272.
(239) Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S.; Graphene Segregated on Ni Surfaces and Transferred to Insulators. Appl. Phys. Lett. 2008, 93, 113103.
(240) Koh, A. T. T.; Foong, Y. M.; Chua, D. H. C. Cooling Rate and Energy Dependence of Pulsed Laser Fabricated Graphene on Nickel at Reduced Temperature. Appl. Phys. Lett. 2010, 97, 114102.
(241) Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L. Continuity of Graphene on Polycrystalline Copper. Nano Lett. 2011, 11, 251-256.
(242) Dahal, A.; Batzill, M. Graphene-Nickel Interfaces: A Review. Nanoscale 2014, 6, 2548-2562.
(243) Mironova-Ulmane, N.; Kuzmin, A.; Sildos, I.; Pärs, M. Polarisation Dependent Raman Study of Single-crystal Nickel Oxide. Cent. Eur. J. Phys. 2011, 9, 1096-1099.
(244) Cao, X.; Shi, Y.; Shi, W.; Lu, G.; Huang, X.; Yan, Q.; Zhang, Q.; Zhang, H. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small 2011, 7, 3163-3168.
(245) Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J. Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. Nano Lett. 2009, 9, 4479-4483.
(246) Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke,R.; Novoselov K. S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy Nano Lett., 2012, 12, 3925-3930.
(247) Sojoudia, U.; Graham, S. Transfer-Free Selective Area Synthesis of Graphene Using Solid-State Self-Segregation of Carbon In Cu/Ni Bilayers. ECS J. Solid State Sci. Technol. 2013, 2, 17-21.
(248) Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y. F.; Liu, Z. F. Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Lett., 2011, 11, 297-303.
(249) Yao, N. Focused Ion Beam Systems: Basics and Applications; Cambridge University Press: Cambridge, New York, 2007.
(250) Abou-Ras, D.; Kirchartz, T.; Rau, W. Advanced Characterization Techniques for Thin Film Solar Cells; Wiley-VCH Verlag GmbH & Co. KGaA: Berlin, 2011.
(251) Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: a Textbook for Materials Science; Springer US: Boston, MA, 2009.
(252) Kumar, C. S. S. Raman Spectroscopy for Nanomaterials Characterization; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012.