簡易檢索 / 詳目顯示

研究生: 吳睿隆
Wu, Ruei-Long
論文名稱: 移動式浮動艙室法測量淡水水體溫室氣體排放之開發與應用研究
Development and Application of Floating Chamber Methods for the Measurement of Greenhouse Gas Emissions from Freshwater Bodies
指導教授: 林財富
Lin, Tsair-Fuh
共同指導教授: 郭益銘
Kuo, Yi-Ming
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 智慧與永續製造學位學程
Program on Smart and Sustainable Manufacturing
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 134
中文關鍵詞: 溫室氣體排放浮動艙室法自然水體淨零科技智慧巡航
外文關鍵詞: Greenhouse Gas Emissions, Floating Chamber Method, Freshwater Ecosystems, Net-Zero technologies, Autonomous navigation
相關次數: 點閱:51下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫室氣體(GHGs),如二氧化碳(CO₂)、甲烷(CH₄),是地球氣候系統中的關鍵成分。淡水生態系統,如湖泊、河流及水庫等,是重要的碳排放源,因此準確量測淡水生態系統中溫室氣體的排放量,對於掌握氣候變化、改善氣候模型、制定政策和進行環境管理至關重要。
    本研究結合浮動艙室(Flux Chamber)與移動式無人船(Unmanned Surface Vehicle),整合成移動式浮動艙室系統,探討量測淡水水體溫室氣體(CO₂與CH₄)通量量測監測可行性。系統設計採用密閉透明艙室搭配外循環氣體管路,結合ABB GLA131微型紅外線氣體分析儀,可於現地高頻率量測水面上方溫室氣體濃度變化,並即時計算碳通量與全球暖化潛勢(GWP)之碳當量值。研究並於南台灣兩個校園水體-崑大崑山湖與成大生態池進行多測點、日夜時段監測。
    研究結果顯示,兩水體在日夜時段與空間分布上均存在顯著差異。CO₂於日間多為負值(碳匯),夜間則呈現正值(碳源),反映光合作用與呼吸作用交替主導的生態週期。兩水體日間平均 CO₂ 通量為-620至625 mg/day/m²、夜間+2090-2690 mg/day/m²,總日均通量達1280至2060 mg/day/m²,同一水體四個量測點間相對差異最高可達35-85%。CO₂ 通量量測結果顯示兩水體之明顯差異性,及單一點為無法代表水體的碳排放量。CH₄排放則相對穩定,日夜通量差異不顯著,但兩水體排放通量差異達270%,顯示個水體量測的重要性,各點間之差異最高達75%,顯示多點位量測估算排放量而言更為精準。
    研究並驗證了移動式浮動艙室系統在長時間與多測點監測的可行性與效率,量測平衡時間短(約3-5分鐘)、可快速捕捉通量變化,並適用於不同環境條件。結果對於熱帶與亞熱帶區域湖泊碳收支之評估、碳源碳匯辨識及碳管理策略具有重要參考價值。

    Greenhouse gases (GHGs) such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) are pivotal drivers of climate change. CH₄ is especially impactful with a 100-year global warming potential roughly 28 times that of CO₂. Freshwater ecosystems (lakes, rivers, reservoirs, ponds) are significant natural sources of GHGs, particularly CH₄ produced via anaerobic decomposition in sediments. However, emissions from many freshwater bodies remain poorly quantified. This research addresses that gap by developing an improved floating chamber method for in-situ measurement of GHG fluxes at the water–air interface, integrated with an autonomous unmanned vessel for mobile monitoring. We deployed this system in two freshwater bodies in Tainan, Taiwan – Kun Shan Lake and the NCKU campus ecological pond – conducting seasonal and diurnal measurements of CO₂ and CH₄ fluxes. The floating chamber was coupled to a portable gas analyzer (ABB GLA131) to record real-time concentration changes, which were converted to fluxes using the chamber’s volume-to-area ratio and the ideal gas law. Measured fluxes were then expressed in carbon-equivalent units using Intergovernmental Panel on Climate Change (IPCC) factors (e.g. CH₄’s GWP≈27.2).
    Key findings include distinct spatial and temporal patterns of GHG emissions. CH₄ fluxes were detected continuously as positive (emissions), whereas CO₂ fluxes showed a diel cycle—net uptake (negative flux) during daylight due to photosynthetic activity, and net emission at night, yielding a coexisting sink-source behavior. CH₄ emissions, though small in mass (on the order of a few mg·m⁻²·day⁻¹), contributed disproportionately to total GHG impact when converted to CO₂-equivalents. Kun Shan Lake exhibited higher overall emissions than the smaller pond, with annual fluxes of ~820 kg CO₂-equivalent per m², versus ~653 kg CO₂-eq·m⁻² for the pond. These values approach the upper end reported for eutrophic water bodies, underscoring the significant climate impact of freshwater CH₄ release. The autonomous monitoring platform performed robustly in the field, reliably navigating preset waypoints and maintaining data quality even under wind and wave disturbances. This study’s innovations greatly enhance the spatio-temporal resolution of freshwater GHG measurements, providing critical data to refine global GHG inventories and inform climate policy on carbon management and mitigation.

    摘要 I EXTENDED ABSTRACT II 致謝詞 VIII 目錄 X 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 全球氣候變遷與溫室氣體 4 2-1-1 溫室氣體的定義與類型 4 2-1-2 全球變遷背景 6 2-1-3 溫室氣體對淡水生態系統的影響 9 2-2 淡水生態系統中的溫室氣體排放 10 2-2-1 淡水水體中溫室氣體排放的主要來源 10 2-2-2 水體溫室氣體排放的影響因素 11 2-2-3 全球淡水生態系統中的甲烷和二氧化碳排放量估算 13 2-3 浮動通量室法(FLOATING CHAMBER METHODS)概述 15 2-3-1 浮動通量室法(Floating Chamber Methods)的技術原理 15 2-3-2 浮動通量室法的發展歷史與應用 16 2-3-3 浮動通量室法的優勢 17 2-4 浮動通量室法的技術挑戰與限制 18 2-4-1 環境因素對測量的影響 18 2-4-2 艙室設計的挑戰 20 2-5 水體溫室氣體排放的全球評估與數據應用 24 2-5-1 全球水體溫室氣體排放的現有數據 24 2-5-2 數據如何應用於氣候模型 24 第三章 實驗設備與方法 26 3-1 移動式浮動艙室法之架構與流程 26 3-2 各實驗水體採樣點選定描述及現況特徵 27 3-2-1 崑山科技大學崑山湖 27 3-2-2 國立成功大學安南校區生態池 29 3-3 溫室氣體採樣分析設備及在線監測方法 31 3-3-1 實驗設備 31 3-3-2 溫室氣體在線連續監測方法 32 第四章 結果與討論 34 4-1 儀器性能驗證與背景測試 34 4-1-1 雷射校正步驟與精準性評估 34 4-1-2 儀器校正與反應時間測試 36 4-1-3 大氣濃度空白背景實驗 38 4-1-4 GHG濃度轉換碳通量公式說明 39 4-1-5 通量計算與碳當量轉換 40 4-2 實地監測結果(崑大崑山湖) 42 4-2-1 環境因子 42 4-2-2 大氣背景空白濃度測量 43 4-2-3 崑山湖監測濃度 45 4-2-4 崑山湖湖區總通量計算與碳當量轉換 49 4-2-5 崑山湖四點通量差異探討與環境特性解析 50 4-3 實地監測結果(成大生態池) 51 4-3-1 環境因子 51 4-3-2 大氣背景空白濃度測量 52 4-3-3 生態池監測濃度 55 4-3-4 生態池湖區總通量計算與碳當量轉換 58 4-3-5 生態池四點通量差異探討與環境特性解析 59 4-4 兩處水體碳通量之日夜與區位比較總結 61 4-5 智慧型移動式水體溫室氣體監測無人平台 63 4-5-1 開發背景與動機 63 4-5-2 系統設計與整合架構 63 4-5-3 自主巡航測試與定位精度驗證 65 4-5-4 浮動艙室模組整合情況 67 4-5-5 採樣代表性分析 70 4-5-6 熱點圖與空間分布分析 71 4-5-7 後續相關之應用場域 72 第五章 結論與建議 74 5-1 結論 74 5-2 建議 75 參考文獻 76 附錄 90 APPENDIX A:崑山湖A點通量計算 90 APPENDIX B:崑山湖B點通量計算 93 APPENDIX C:崑山湖C點通量計算 96 APPENDIX D:崑山湖D點通量計算 99 APPENDIX E:生態池A點通量計算 102 APPENDIX F:生態池B點通量計算 105 APPENDIX G:生態池C點通量計算 108 APPENDIX H:生態池D點通量計算 111

    1.Abril, G., Guérin, F., Richard, S., Delmas, R., Galy‐Lacaux, C., Gosse, P., ..., Matvienko, B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10‐year old tropical reservoir (Petit Saut, French Guiana). Global biogeochemical cycles, 19(4).
    2.Aho, K.S., Raymond, P.A., 2019. Differential response of greenhouse gas evasion to storms in forested and wetland streams. Journal of Geophysical Research: Biogeosciences, 124(3), 649-662.
    3.Andrade, C., Cruz, J.V., Viveiros, F., Coutinho, R., 2021. Diffuse CO2 emissions from Sete Cidades volcanic lake (São Miguel Island, Azores): influence of eutrophication processes. Environmental Pollution, 268, 115624.
    4.Andrade, C., Viveiros, F., Cruz, J.V., Coutinho, R., 2021. Global carbon dioxide output of volcanic lakes in the Azores archipelago, Portugal. Journal of Geochemical Exploration, 229, 106835.
    5.Attermeyer, K., Casas-Ruiz, J.P., Fuss, T., Pastor, A., Cauvy-Fraunié, S., Sheath, D., ..., Bodmer, P., 2021. Carbon dioxide fluxes increase from day to night across European streams. Communications Earth, Environment, 2(1), 118.ISO 690
    6.Attermeyer, K., Flury, S., Jayakumar, R., Fiener, P., Steger, K., Arya, V., ..., Premke, K., 2016. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake. Scientific reports, 6(1), 20424.
    7.Aubinet, M., Vesala, T., Papale, D., 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer.
    8.Aufdenkampe, A.K., Mayorga, E., Raymond, P.A., Melack, J.M., Doney, S.C., Alin, S.R., ..., Yoo, K., 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60.
    9.Baldocchi, D., 2003. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Global Change Biology, 9(4), 479-492.
    10.Bao, Y., Hu, M., Li, S., Wang, Y., Wen, J., Wu, X., ..., Du, P., 2023. Carbon dioxide partial pressures and emissions of the Yarlung Tsangpo River on the Tibetan Plateau. Frontiers in Environmental Science, 10, 1036725.
    11.Bartosiewicz, M., Laurion, I., MacIntyre, S., 2015. Greenhouse gas emission and storage in a small shallow lake. Hydrobiologia, 757, 101-115.
    12.Bastien, J., Demarty, M., Tremblay, A., 2011. CO2 and CH4 diffusive and degassing emissions from 2003 to 2009 at Eastmain 1 hydroelectric reservoir, Québec, Canada. Inland Waters, 1(2), 113-123.
    13.Bastviken, D., J. Cole, M. Pace, and L. Tranvik , 2004, Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cycles, 18, GB4009
    14.Bastviken, D., Santoro, A.L., Marotta, H., Pinho, L.Q., Crill, P., Enrich-Prast, A., 2010. Methane emissions from Pantanal, South America, during the low water season: Toward more comprehensive sampling. Environmental Science, Technology, 44(14), 5450-5455.
    15.Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859.
    16.Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A., 2011. Freshwater methane emissions offset the continental carbon sink. Science, 331, 6013, 50.
    17.Batterman, S.A., McQuown, B.C., Murthy, P.N., McFarland, A.R., 1992. Design and evaluation of a long-term soil gas flux sampler. Environmental science, technology, 26(4), 709-714.
    18.Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K., Richter, A., Tranvik, L.J., 2009. The boundless carbon cycle. Nature Geoscience, 2: 598-600.
    19.Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S., 2020. High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environmental Science, Technology, 48(19), 11100-11108.
    20.Boodoo, K.S., Schelker, J., Trauth, N., Battin, T.J., Schmidt, C., 2019. Sources and variability of CO2 in a prealpine stream gravel bar. Hydrological Processes, 33(17), 2279-2299.
    21.Borges, A.V., S. Djenidi, G. Lacroix, J. The ́ate, B. Delille, and M. Frankignoulle, (2004b). Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters, 30(11):1558, doi:10.1029/2003GL017143, 2003.
    22.Borges, A.V., Vanderborght, J.P., Schiettecatte, L.S., Gazeau, F., Ferrón-Smith, S., Delille, B., Frankignoulle, M. (2004a). Variability of the gas transfer velocity of CO 2 in a macrotidal estuary (the Scheldt). Estuaries, 27, 593-603.
    23.Byzaakay, A.A., Kolesnichenko, L.G., Kolesnichenko, I.I., Khovalyg, A.O., Raudina, T.V., Prokushkin, A.S., ..., Kirpotin, S., 2023. Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva). Water, 15(19), 3411.
    24.Chiriboga, G., Borges, A.V., 2023. Andean headwater and piedmont streams are hot spots of carbon dioxide and methane emissions in the Amazon basin. Communications Earth, Environment, 4(1), 76.
    25.Christiansen, J.R., Outhwaite, J., Smukler, S.M., 2015. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology, 211, 48-57.
    26.Cole, J.J., Bade, D.L., Bastviken, D., Pace, M.L., Van de Bogert, M., 2010. Multiple approaches to estimating air-water gas exchange in small lakes. Limnology and Oceanography: Methods, 8(6), 285-293
    27.Collier, S.M., Ruark, M.D., Oates, L.G., Jokela, W.E., Dell, C.J., 2014. Measurement of greenhouse gas flux from agricultural soils using static chambers. Journal of Visualized Experiments, (90), e52110.
    28.Cousins, I.T., Beck, A.J., Jones, K.C., 1999. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface. Science of the Total Environment, 228(1), 5-24.
    29.Crawford, J.T., Loken, L.C., Stanley, E.H., Stets, E.G., Dornblaser, M.M., Striegl, R.G. (2013 a). CO2 and CH4 Emissions from Streams in a Lake-Rich Landscape: Patterns, Controls, and Regional Significance. Global Biogeochemical Cycles, 28(3), 197-210.
    30.Crawford, J.T., R.G. Striegl, K.P. Wickland, M.M. Dornblaser, and E.H. Stanley (2013 b), Carbon dioxide and methane emissions from a headwater stream network of interior Alaska, J. Geophys. Res. Biogeosci., 118, 482–494,
    31.Crosson, E., 2008. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Applied Physics B, 92(3), 403-408.
    32.Davidson, E. A., & Kanter, D. (2014). Inventories and scenarios of nitrous oxide emissions. Environmental Research Letters.
    33.Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., ..., Pelletier, G.J., 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience, 66(11), 949-964.
    34.DelSontro, T., Beaulieu, J.J., Downing, J.A., 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters, 3(3), 64-75
    35.DelSontro, T., Beaulieu, J.J., Downing, J.A., 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters, 3(3), 64-75.
    36.DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P.A., Prairie, Y.T., 2018. Methane ebullition and diffusion from northern ponds and small lakes regulated by the interaction of temperature and system productivity. Limnology and Oceanography, 61(S1), S62-S77.
    37.DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P.A., Prairie, Y.T., 2018. Methane ebullition and diffusion from northern ponds and small lakes regulated by the interaction of temperature and system productivity. Limnology and Oceanography, 61(S1), S62-S77.
    38.DelSontro, T., Kunz, M.J., Kempter, T., Wüest, A., Wehrli, B., Senn, D.B., 2018. Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environmental Science, Technology, 45(23), 9866-9873.
    39.Demarty, M., Bastien, J., Tremblay, A., Hesslein, R.H., Gill, R., 2009. Greenhouse gas emissions from boreal reservoirs in Manitoba and Québec, Canada, measured with automated systems. Environmental science, technology, 43(23), 8908-8915.
    40.Duc, N.T., Silverstein, S., Lundmark, L., Reyier, H., Crill, P., Bastviken, D., 2013. Automated flux chamber for investigating gas flux at water–air interfaces. Environmental science, technology, 47(2), 968-975.
    41.Dyukarev, E., Zarov, E., Alekseychik, P., Nijp, J., Filippova, N., Mammarella, I., et al., , 2021. The multiscale monitoring of peatland ecosystem carbon cycling in the middle taiga zone of Western Siberia: The Mukhrino bog case study. Land, 10(8), 824.
    42.Eklund, B., 1992. Practical guidance for flux chamber measurements of fugitive volatile organic emission rates. Journal of the Air, Waste Management Association, 42(12), 1583-1591.
    43.Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J.J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., Mammarella, I., 2018. Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 15(2), 429-445. https://doi.org/10.5194/bg-15-429-2018
    44. Flores, L., Garfí, M., Pena, R., García, J., 2021. Promotion of full-scale constructed wetlands in the wine sector: Comparison of greenhouse gas emissions with activated sludge systems. Science of The Total Environment, 770, 145326.
    45.Gong, J.C., Li, B.H., Hu, J.W., Ding, X.J., Liu, C.Y., Yang, G.P., 2023. Tidal effects on carbon dioxide emission dynamics in intertidal wetland sediments. Environmental Research, 238, 117110.
    46.Goulden, M.L., Munger, J.W., Fan, S.-M., Daube, B.C., Wofsy, S.C., 1996. Measurements of Carbon Sequestration by Long-Term Eddy Covariance: Methods and a Critical Evaluation of Accuracy. Global Change Biology, 2(3), 169-182.
    47.Gruca-Rokosz, R., 2020. Quantitative fluxes of the greenhouse gases CH4 and CO2 from the surfaces of selected Polish reservoirs. Atmosphere, 11(3), 286.
    48.Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., ..., Varfalvy, L., 2007. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river donstream. Journal of Marine Systems, 66(1-4), 161-172.
    49. Gålfalk, M., Bastviken, D., Fredriksson, S., Arneborg, L., 2013. Determination of the piston velocity for water‐air interfaces using flux chambers, acoustic Doppler velocimetry, and IR imaging of the water surface. Journal of Geophysical Research: Biogeosciences, 118(2), 770-782.
    50. Harrison, J.A., Deemer, B.R., Birchfield, M.K., O'Malley, M.T., 2021. Reservoir water-level drawdowns accelerate and amplify methane emission. Environmental Science, Technology, 51(3), 1267-1277
    51. Heiskanen, L., Tuovinen, J.P., Vekuri, H., Räsänen, A., Virtanen, T., Juutinen, S., ..., Aurela, M., 2023. Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape. Biogeosciences, 20(3), 545-572.
    52. Holgerson, M.A., Raymond, P.A., 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222-226.
    53. Holmes, M.E., Crill, P.M., Burnett, W.C., McCalley, C.K., Wilson, R.M., Frolking, S., ..., Chanton, J.P., 2022. Carbon accumulation, flux, and fate in Stordalen Mire, a permafrost peatland in transition. Global Biogeochemical Cycles, 36(1), e2021GB007113.
    54. Hope, D., Billett, M.F., Cresser, M.S. (2004a). A review of the export of carbon in river water: Fluxes and processes. Environmental Pollution, 84(3), 301-324.
    55. Hope, D., Palmer, S.M., Billett, M.F., Dawson, J.J. C. (2004b). Variations in dissolved CO2 and CH4 in a first-order stream and catchment: An investigation of soil-stream linkages. Hydrological Processes, 18(17), 3255-3275.
    56. Horgby, Å., Boix Canadell, M., Ulseth, A.J., Vennemann, T.W., Battin, T.J., 2019. High‐resolution spatial sampling identifies groundwater as driver of CO2 dynamics in an Alpine stream network. Journal of Geophysical Research: Biogeosciences, 124(7), 1961-1976.
    57. Huang, J., Zhao, W., Li, Z., Ou, Y., Lin, L., 2022. Estimation of CO2 emission in reservoir coupling floating chamber and thin boundary layer methods. Science of The Total Environment, 811, 151438.
    58. IPCC , 2014. Climate change and feedback mechanisms in GHG emissions. IPCC Fifth Assessment Report.
    59. IPCC ,2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways.
    60. IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001
    61. Jähne, B., Heinz, G., Dietrich, W., 1987. Measurement of the diffusion coefficients of sparingly soluble gases in water. Journal of Geophysical Research: Oceans, 92(C10), 10767-10776.
    62. Kelly, J., Kljun, N., Eklundh, L., Klemedtsson, L., Liljebladh, B., Olsson, P.O., ..., Xie, X., 2021. Modelling and upscaling ecosystem respiration using thermal cameras and UAVs: Application to a peatland during and after a hot drought. Agricultural and Forest Meteorology, 300, 108330.
    63. Kremer, J.N., Nixon, S.W., Buckley, B., Roques, P., 2003. Technical Note: Conditions for using the floating chamber method to estimate air-water gas exchange. Estuaries, 26(4), 985-990.
    64. Krickov, I.V., Lim, A.G., Shirokova, L.S., Korets, M. А., Karlsson, J., Pokrovsky, O.S., 2023. Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons. Science of The Total Environment, 859, 160202.
    65. Kumar, A., Yang, T., Sharma, M.P., 2019. Greenhouse gas measurement from Chinese freshwater bodies: A review. Journal of Cleaner Production, 233, 368-378.
    66. Lambert, M., Fréchette, J.L., 2005. Analytical techniques for measuring fluxes of CO2 and CH4 from hydroelectric reservoirs and natural water bodies. In Greenhouse gas emissions—fluxes and processes: hydroelectric reservoirs and natural environments (pp. 37-60). Berlin, Heidelberg: Springer Berlin Heidelberg.
    67. Liu, B., Tian, M., Shih, K., Chan, C.N., Yang, X., Ran, L., 2021. Spatial and temporal variability of pCO 2 and CO2 emissions from the Dong River in south China. Biogeosciences, 18(18), 5231-5245.
    68. Liu, L., Xu, M., 2016. Microbial biomass in sediments affects greenhouse gas effluxes in Poyang Lake in China. Journal of Freshwater Ecology, 31(1), 109-121.
    69. Lorke, A., Bodmer, P., Noss, C., Alshboul, Z., Koschorreck, M., Somlai-Haase, C., ..., Premke, K., 2015. drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences, 12(23), 7013-7024.
    70. Matthews, C.J. D., St. Louis, V.L., Hesslein, R.H., 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environmental Science, Technology, 37(4), 763-768.
    71. Matthews, C.J. D., St. Louis, V.L., Hesslein, R.H., 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environmental Science, Technology, 37(4), 763-768.
    72. Matthias, A.D., Yarger, D.N., Weinbeck, R.S., 1978. A numerical evaluation of chamber methods for determining gas fluxes. Geophysical Research Letters, 5(9), 765-768.
    73. Mazot, A., Bernard, A., Battaglia, M., 2015. CO2 flux from volcanic lakes. Science of the Total Environment, 503, 126-140.
    74. Mazot, A., Bernard, A., 2015. CO2 degassing from volcanic lakes. Comprehensive Sampling and Monitoring Solutions for Freshwater Lakes, 9(3), 242-255.
    75. McMahon, P.B., Dennehy, K.F., 1999. N2O emissions from a nitrogen-enriched river. Environmental Science, Technology, 33(1), 21-25.
    76. Moncrieff, J.B., Massheder, J.M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., …, Verhoef, A., 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188, 589-611.
    77. Musenze, R.S., Grinham, A., Werner, U., Gale, D., Sturm, K., Udy, J., Yuan, Z., 2014. Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs. Environmental Science, Technology, 48(24), 14499-14507.
    78. Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forc- ing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    79. Myhre, G., et al. (2013). Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
    80. Natchimuthu, S., Wallin, M.B., Klemedtsson, L., Bastviken, D., 2017. Spatio-temporal patterns of stream methane and carbon dioxide emissions in a hemiboreal catchment in Southwest Sweden. Scientific reports, 7(1), 39729.
    81. Nugent, K.A., Strachan, I.B., Strack, M., Roulet, N.T., Ström, L., Chanton, J.P., 2021. Cutover peat limits methane production causing low emission at a restored peatland. Journal of Geophysical Research: Biogeosciences, 126(12), e2020JG005909.
    82. Parker, R.J., et al., 2013. Measuring gas emissions from soil and water. Environmental Science, Technology, 47(9), 4317-4324.
    83. Peixoto, R.B., Marotta, H., Bastviken, D., Enrich-Prast, A., 2016. Floating aquatic macrophytes can substantially offset open water CO2 emissions from tropical floodplain lake ecosystems. Ecosystems, 19, 724-736.
    84. Podgrajsek, E., Sahlée, E., Bastviken, D., Holst, J., Lindroth, A., Tranvik, L., and Rutgersson, A.: Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes, Biogeosciences, 11, 4225–4233,
    85. Rawitch, S.A., Cordero, R.D., Wüest, A., Peeters, F., 2021. Physical processes controlling the methane emissions from Lake Kivu. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG005935.
    86. Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al., 2013. Global carbon dioxide emissions from inland waters. Nature, 503, 7476, 355-359.
    87. Rosentreter, J.A., Maher, D.T., Ho, D.T., Call, M., Barr, J.G., Eyre, B.D., 2017. Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries. Limnology and Oceanography, 62(2), 561-578.
    88. Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., et al., 2019. The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561–1623.
    89. Schubert, C.J., Diem, T., Eugster, W., 2012. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: A comparison. Environmental science, technology, 46(8), 4515-4522.
    90. Sieczko, A.K., Duc, N.T., Schenk, J., Pajala, G., Rudberg, D., Sawakuchi, H.O., Bastviken, D., 2020. Diel variability of methane emissions from lakes. Proceedings of the National Academy of Sciences, 117(35), 21488-21494.
    91. Soumis, N., Duchemin, É., Canuel, R., Lucotte, M., 2004. Greenhouse gas emissions from reservoirs of the western United States. Global Biogeochemical Cycles, 18, GB3022.
    92. Striegl, R.G., Michmerhuizen, C.M., 1998. Gas fluxes across water-air interfaces in freshwater and marine environments. Limnology and Oceanography, 43(4), 739-747.
    93. Sun, H., Lu, X., Yu, R., Yang, J., Liu, X., Cao, Z., ..., Geng, Y., 2021. Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai. Water Research, 201, 117363.
    94. Sun, Z., Jiang, H., Wang, L., Mou, X., Sun, W., 2013. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and soil, 369, 317-333.
    95. Sø, J.S., Sand-Jensen, K., Martinsen, K.T., Polauke, E., Kjær, J.E., Reitzel, K., Kragh, T., 2023. Methane and carbon dioxide fluxes at high spatiotemporal resolution from a small temperate lake. Science of the Total Environment, 878, 162895.
    96. Tan, D., Li, Q., Wang, S., Yeager, K.M., Guo, M., Liu, K., Wang, Y., 2021. Diel variation of CH4 emission fluxes in a small artificial lake: Toward more accurate methods of observation. Science of The Total Environment, 784, 147146.
    97. Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., ..., Weyhenmeyer, G.A., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2), 2298-2314.
    98. Tremblay, A., Bastien, J., 2009. Greenhouse gas emissions from reservoirs. In: Greenhouse Gas Emissions—Fluxes and Processes. Springer, Berlin, Heidelberg.
    99. United Nations (2015). Paris Agreement. United Nations Framework Convention on Climate Change.
    100.Vachon, D., Prairie, Y.T., Cole, J.J., 2010. The relationship between near‐surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and oceanography, 55(4), 1723-1732.
    101.Vingiani, F., Durighetto, N., Klaus, M., Schelker, J., Labasque, T., Botter, G., 2021. Evaluating stream CO 2 outgassing via drifting and anchored flux chambers in a controlled flume experiment. Biogeosciences, 18(3), 1223-1240.
    102.Vorobyev, S.N., Pokrovsky, O.S., Korets, M., Shirokova, L.S., 2022. A snap-shot assessment of carbon emission and export in a pristine river draining permafrost peatlands (Taz River, Western Siberia). Frontiers in Environmental Science, 10, 987596.
    103.Wang, X., et al. (2017). Nitrous oxide emissions from the littoral zones of a shallow lake in eastern China. Environmental Science & Technology, 51(10), 5757-5764.
    104.Yang, M., Geng, X., Grace, J., Lu, C., Zhu, Y., Zhou, Y., Lei, G., 2014. Spatial and seasonal CH4 flux in the littoral zone of Miyun Reservoir near Beijing: the effects of water level and its fluctuation. Plos one, 9(4), e94275.
    105.Yang, T.H. J., Chambefort, I., Mazot, A., Rowe, M.C., Scott, B., Macdonald, N., ..., de Ronde, C.E., 2023. Understanding caldera degassing from a detailed investigation at Lake Rotoiti, Okataina Volcanic Centre, New Zealand. Journal of Volcanology and Geothermal Research, 433, 107716.
    106.Yang, W., St. Louis, V.L., Hesslein, R.H., 2021. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environmental Science, Technology, 37(4), 763-768.
    107.Zhao, M., Han, G., Wu, H. et al., 2020. Inundation depth affects ecosystem CO 2 and CH 4 exchange by changing plant productivity in a freshwater wetland in the Yellow River Estuary. Plant and Soil, 454, 87-102.
    108.Zhao, Y., Sherman, B., Ford, P., Demarty, M., DelSontro, T., Harby, A., ..., Wu, B., 2015. A comparison of methods for the measurement of CO2 and CH4 emissions from surface water reservoirs: Results from an international workshop held at Three Gorges Dam, June 2012. Limnology and Oceanography: Methods, 13(1), 15-29.
    109.Zheng, Y., Wu, S., Xiao, S., Yu, K., Fang, X., Xia, L., Wang, J., Liu, S., Freeman, C., Zou, J., 2022. Global methane and nitrous oxide emissions from inland waters and estuaries. Global Change Biology, 28(15), 4713-4725.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE