| 研究生: |
張廉楷 Chang, Lien-Kai |
|---|---|
| 論文名稱: |
新型壓電振動子應用於超音波馬達之研究 Research on Novel Piezoelectric Vibrators for Ultrasonic Motors |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 彎張式超音波馬達 、蠕動式超音波馬達 |
| 外文關鍵詞: | flextensional ultrasonic motor, squiggle ultrasonic motor |
| 相關次數: | 點閱:101 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著攜帶式裝置於近年的蓬勃發展,越來越多電子產品需要小型馬達來運作。在小型化的裝置需求下,超音波馬達的重要性已與日俱增。本研究主要探討兩種以共振模式驅動的超音波馬達,分別為彎張式與蠕動式超音波馬達。彎張式超音波馬達為共振驅動馬達裡具最大出力與速度的類型,馬達以積層式壓電致動器運作,所以通常僅以低電壓驅動。若需提升馬達出力與速度,增加驅動電壓為常見的方式,然而對彎張式超音波馬達而言,加大電壓可能會導致積層式壓電致動器退極化。因此本研究提出星型彎張超音波馬達設計,可避免彎張超音波馬達由於提高驅動電壓導致壓電致動器退極化而損壞的問題。蠕動式超音波馬達為現有共振驅動馬達裡體積最小的類型,為了更容易內嵌於應用裝置內,除了馬達本體外,其驅動電路亦需要小型化。因此本研究提出可單相驅動的馬達設計,令驅動電路可進一步簡化,達到縮減體積的目的。為了降低馬達製作成本,本研究以常見的壓電陶瓷片製作單相驅動馬達,於是高驅動電壓是必需的。但驅動電路內使用高頻變壓器會令電路體積過大,故本研究以壓電式變壓器取代高頻變壓器,並成功驅動單相馬達。馬達以此驅動架構進行定位控制,藉由合適地設計比例控制器,馬達可控制定位的穩態誤差於6微米下。
This dissertation develops two types of novel piezoelectric vibrators for ultrasonic motors. The flextensional ultrasonic motors can provide high thrust force and speed, but there is a risk of internal multilayer piezoelectric ceramic depolarization when the higher voltage is applied. Thus the star-shaped flextensional stator is proposed to increase the operating voltage range of the flextensional ultrasonic motors. The squiggle ultrasonic motors have compact size in motor body, but the required two driving voltage sources causes their driving circuit larger compared with the motor body. For the purpose of reducing driving circuit volume, a single phase squiggle ultrasonic motor is proposed in this study.
[1] K. Uchino, “Piezoelectric actuators 2006”, J. Electroceram., vol. 20, no. 3–4, pp. 301-309, 2008.
[2] D.A. Henderson. (2005). Piezo ceramic motors improve phone camera auto focus and zoom. New Scale Technologies [Online]. Available: http://www.NewScaleTech.com
[3] M. Hoshina, T. Mashimo, and S. Toyama, “Development of Pipe Inspection Robot; Driving System and Control of Outer-rotor-typed Spherical Ultrasonic Motor”, in Proc. International Conference on Advanced Robotics (ICAR 2009), pp.97-102, 2009.
[4] F. Claeyssen, R. LeLetty, L. Chouteau, N. Lhermet, L. Petit, R. Briot, and P. Gonnard,“A new multi-mode piezoelectric motor”, Proc. SPIE Int. Soc. Opt. Eng., 2779, pp. 634-637, 1996.
[5] L. Petit , R. Briot and P. Gonnard, “A multi-mode piezomotor using a flextensional coupler”, J. Smart Mater. Struct., vol. 8, no. 2, pp. 167-174, 1999.
[6] R. Seiler, “The Ultrasonic Piezo-Drive: An Innovative Solution for High-Accuracy Positioning”, Proc. of the 16th Small Satellites Conference, Logan, Utah, 2002.
[7] P. Bouchilloux and K. Uchino, “Combined finite element analysis-genetic algorithm method for the design of ultrasonic motors”, J. Intell. Mater. Syst. Struct., 14 (10), pp. 657–667, 2003.
[8] H.V. Brussel, W.V. Vijver, M.D. Volder, S. Devos, D. Reynaerts, “A fast, high-stiffness and high-resolution piezoelectric motor with integrated bearing and driving functionality,” CIRP Annals, 55/1, pp. 373–376, 2006
[9] S.T. Ho, “Characteristics of the linear ultrasonic motor using an elliptical shape stator”, Jpn. J. Appl. Phys., vol. 45, no. 7, pp. 6011-6013, 2006.
[10] M. Kurosawa, K. Nakamura, T. Okamoto, and S. Ueha, “An ultrasonic motor using bending vibration of a short cylinder”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, UDDC-36, pp. 517–521, 1989.
[11] T. Morita, M. Kurosawa, and T. Higuchi, “An ultrasonic micromotor using a bending cylindrical transducer based on PZT thin film”, Sens. Actuators, A Phys., vol. A50, pp. 75, 1995.
[12] T. Morita, M.K. Kurosawa, and T. Higuchi, “A Cylindrical Micro Ultrasonic Motor using PZT Thin Film Deposited by Single Process Hydrothermal Method”, IEEE Trans. Ultrason., Ferroelect. Freq. Contr., vol. 45, pp. 1178-1187, 1998.
[13] T. Morita, M.K. Kurosawa, and T. Higuchi, “Cylindrical micro ultrasonic motor utilizing bulk lead zirconate titanate (PZT)”, Jpn. J. Appl. Phys., 38, pp. 3327–3350,1999.
[14] T. Morita, M. Kurosawa, and T. Higuchi, “A cylindrical shaped micro ultrasonic motor utilizing PZT thin film (1.4 mm in diameter and 5.0 mm long stator transducer) ”, Sens. Actuators A, 83, pp. 225–230,2000.
[15] B. Koc, S. Cagatay, and K. Uchino, “A piezoelectric motor using two orthogonal bending modes of a hollow cylinder,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 4, pp. 495-500, 2002.
[16] S. Cagatay , B. Koc and K. Uchino, "A 1.6 mm, metal tube ultrasonic motor", IEEE Trans., Ultrason., Ferroelect, Freq., Contr., vol. 50, no.7, pp. 782-786, 2003.
[17] D. Henderson, “Simple ceramic motor … inspiring smaller products”, Proc. 10th Int. Conf. New Actuators, pp. 1-4, 2006.
[18] T.Y. Zhou, Y. Chen and C.Y. Lu, “Integrated lens auto-focus system driven by a nut-type ultrosonic motor (USM)”, Sci. China Ser. E, vol. 52, pp. 2591-2596, 2009.
[19] S.Y. He, P. R. Chiarot and S. Park, “A single vibration mode tubular Piezoelectric ultrasonic motor”, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 58, no. 5, pp. 1049-1061, 2011.
[20] S. Park and S.Y. He, “Standing wave brass-PZT square tubular ultrasonic motor”, Ultrasonics, vol. 52, no. 7, pp. 880-889, 2012.
[21] J.T. Zhang, H. Zhu and C.S. Zhao, “Contact analysis and modeling of a linear ultrasonic motor with a threaded output shaft”, J. Electroceram, vol. 29, pp. 254-261, 2012.
[22] S.T. Ho and W.H. Chiu, ”A piezoelectric screw-driven motor operating in shear vibration modes”, J. Intell. Mater. Syst. Struct. pp. 1-12, 2014
[23] X.C. Chu, J.W. Wang, S.M. Yuan, L.T. Li, and H.C. Cui, “A screw-thread-type ultrasonic actuator based on a langevin piezoelectric vibrator,” Rev. Sci. Instrum., vol. 85, no. 6, pp. 1-4, 2014.
[24] H.C. Hayes, “Sound generating and directing apparatus,” U. S. Patent 2, 064, 911, 1936
[25] W.J. Toulis, “Flexural-extensional electromechanical transducer,” U. S. Patent 3, 277, 433, 1966
[26] S.T. Ho, “Modelling of the linear ultrasonic motor using an elliptical shape stator,” IEEE International conference on Mechatronics, pp. 82–87, 2006.
[27] L. Pickelmann. (2004). Low Voltage Co-fired Multilayer Stack, Rings and Chips for Actuation [Online]. Available: http//www.piezomechanik.com
[28] H. Janocha, Adaptronics and Smart Structures: Basics, Materials, Design and Applications, Springer, Berlin, Germany, 2007.
[29] Q. Liu, “Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence”, Defence Sci. Technol. Organ., Victoria Australia, 2006.
[30] S. Sherrit, C.M. Jones, J.B. Aldrich, C. Blodget, X. Bao, M. Badescu, and Y. Bar-Cohen, “Multilayer piezoelectric stack actuator characterization”, Proc. SPIE 15th Int. Symp. on Smart Structures and Materials, San Diego, CA, Vol. 6929-8, 9-13 March, 2008
[31] P. Bouchilloux, S. Cagatay, K. Uchino, and B. Koc, “Finite element modeling and optimization of tube-shaped ultrasonic motors”, Proc. SPIE Symp. on Smart Structures and Materials vol. 5056, pp. 267–276, 2003.
[32] S. Li, M. Yang, and W. He, “Design and optimization of a novel annular sector curvilinear ultrasonic motor,” Proc. IEEE Ultrason. Symp., pp. 1831-1834, 2008.
[33] P.J. Ross, Taguchi techniques for quality engineering, McGraw-Hill International Editions, Singapore, 1996.
[34] 上羽贞行. (1989), 超音波アクチュエ-タ. 电子情报通信学会志, 72(4): 457―462
[35] Bill Kennedy, “Power Packed Piezoelectric motors: big power, small package,” MICROmanufacturing Magazine, Winter 2008
[36] S. Hua, Y. Meng, Y. Lou, Z. Li and X. Wang , “Screw-type actuator driven by piezoelectric transducers,” Adv. Mech. Eng., vol. 7, 2: 1687814014568487, 2015.
[37] S.T. Ho, “Modeling of disk-type piezoelectric transformer”, Proc. 2nd IEEE Conf. Industrial Electron. Appl., pp. 1863-1868, 2007.
[38] T. Cheng, H. Gao, G. Bao and Y. Huang, “A Positioning Control System for Ultrasonic Motor Based on LabVIEW”, Procedia Eng., pp. 1-7, 2011.