簡易檢索 / 詳目顯示

研究生: 張家齊
Chang, Chia-Chi
論文名稱: 鐵氧化物吸附處理含氟廢水之研究
Adsorption of Fluoride Aqueous Solution by Waste Iron Oxide
指導教授: 黃耀輝
Huang, Yao-Hui
凌漢辰
Ling, Han-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 124
中文關鍵詞: 吸附鐵氧化物氟離子
外文關鍵詞: Adsorption, iron oxide, fluoride
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是針對含氟廢水,利用流體化床芬頓(FBR–Fenton)反應的鐵氧化物副產物(BT3),作為資源再利用之吸附材,目的是找出低成本之吸附材以取代現有除氟的方法。研究中分別利用XRD、SEM與FTIR測定BT3的基本物性。吸附反應的操作變因包括:pH、反應時間、氟離子濃度(從 0.75到 6 mmol L-1)以及反應溫度(從 303 到 323K)。當反應條件在氟初始濃度為6 mmol L-1,且pH控制在3.9±0.2,溫度為303±1 K,發現BT3的最大吸附量可達 1.17 mmol g−1 (22.2 mg g-1)。等溫吸附模式最符合Langmuir模式,並計算其熱力學參數,其ΔG◦, ΔH◦ and ΔS◦ 分別為 −1.63 kJ mol−1 (at 303 K), -1.75 kJ mol−1 與 -52.4J mol−1 K−1。此外, 擬二階(pseudo-second-order)速率模式最能符合此吸附材之吸附動力模式。而BT3可利用氫氧化鈉再生,其再生效果在氫氧化鈉濃度為0.05 mol L-1,可達95.1%。本研究利用鍛燒方式改質吸附材,發現當鍛燒溫度達300°C,可使吸附材達到最大吸附量。針對陰離子效應的測試,發現磷酸氫根影響最大,而硝酸根影響最小。

    This study uses a waste iron oxide material (BT3), which is a by-product of the fluidized-bed Fenton reaction (FBR–Fenton), for the treatment of a fluoride (F-) solution. The purpose of this study is to investigate a low-cost sorbent as a replacement for the current costly methods of removing fluoride from wastewater. X-ray powder diffraction (XRD), FTIR and scanning electron microscopy (SEM) are used to characterize the BT3. Contact time, pH, F- concentration (from 0.75 to 6 mmol L-1) and temperature (from 303 to 323K) are used as operation parameters to treat the fluoride solution. The highest F- adsorption capacity of the BT3 adsorbent was determined to be 1.17 mmol g−1 (22.2 mg g-1) for a 6 mmol L-1 initial F concentration at pH 3.9±0.2 and 303±1 K. Adsorption data were well described by the Langmuir model, and the thermodynamic constants of the adsorption process, ΔG◦, ΔH◦ and ΔS◦, were evaluated as −1.63 kJ mol−1 (at 303 K), -1.75 kJ mol−1 and -52.4J mol−1 K−1, respectively. Additionally, a pseudo-second-order rate model was adopted to describe the kinetics of adsorption. BT3 could be regenerated with NaOH, and the regeneration efficiency reached 95.1 % when the concentration of NaOH was 0.05 mol L-1. There is a small increase in the adsorption capacity on increasing the calcination temperature of BT3 to 300°C. Furthermore, increasing the solution temperature leads to a sharp decrease in the adsorption capacity for the calcined BT3. This may be due to structural and phase changes at high calcination temperatures. It leads to a decrease of the specific surface area and a collapse of the pores due to sintering and transformation of metal hydroxides to oxides when calcination temperatures > 300 °C. These changes might reduce the adsorption sites. The impact of major anions on fluoride adsorption followed the order of HPO42- > SO42-,> Cl- > NO3− for BT3.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號 XII 第一章 前言 1 第二章 文獻回顧 3 2-1 氟化物之特性概述 3 2-1-1 氟化物之性質與污染來源 3 2-1-2 氟化物對人體以及環境的影響 3 2-1-3 氫氟酸的應用及傷害 4 2-2 半導體產業簡介 5 2-2-1 半導體產業概況 5 2-2-2 半導體製造流程 6 2-2-3 半導體製程廢棄物 9 2-2-4 半導體業廢水之處理 11 2-3 鐵氧化物特性與應用 15 2-3-1 鐵氧化物之種類 15 2-3-2 鐵氧化物表面化學特性 16 2-3-3 合成鐵氧化物 23 2-3-4 覆膜鐵氧化物 27 2-3-5 鐵氧化物之應用 28 2-4 吸附理論 29 2-4-1 物理吸附 30 2-4-2 化學吸附 30 2-4-3 特定吸附與非特定吸附 30 2-4-4 等溫吸附模式 32 2-4-5 背景電解質對吸附反應之影響 35 2-4-6 陽離子之吸附反應 36 2-4-7 陰離子之吸附反應 37 2-5 含氟廢水處理相關研究 38 第三章 實驗設備、材料與方法 44 3-1 實驗架構 45 3-2 吸附材料基本性質鑑定 46 3-2-1 比表面積與孔隙分佈 46 3-2-2 表面形態觀察 46 3-2-3 表面元素分析 47 3-2-4 晶相分析 47 3-2-5 化學結構分析 48 3-2-6 覆膜總鐵量分析 48 3-2-7 表面酸解離常數測定 49 3-2-8 真密度與孔隙率量測 51 3-3 吸附實驗 53 3-3-1 實驗藥品 53 3-3-2 實驗設備 53 3-3-3 實驗裝置 54 3-3-4 吸附材料篩選 54 3-3-5 恆溫吸附動力實驗 55 3-3-6 恆溫吸附平衡實驗 55 3-3-7 變溫吸附平衡實驗 56 3-3-8 陰離子吸附效應 57 3-3-9 脫附實驗 57 第四章 實驗結果與討論 58 4-1 吸附材料基本性質與篩選 59 4-2 吸附材料之鑑定分析 61 4-2-1 晶相分析 61 4-2-2 表面形態觀察與元素分析 63 4-2-3 化學結構分析 67 4-3 吸附與脫附實驗 69 4-3-1 吸附平衡時間推算與動力模式 69 4-3-2 吸附量與pH值之關係 74 4-3-3 溫度對吸附現象之影響與等溫吸附模式 76 4-3-4 溫度對吸附現象之影響 81 4-3-5 陰離子效應 85 4-3-6 脫附與穩定性試驗 87 4-3-7 吸附材改質與基本性質 90 第五章 結論與建議 97 5-1 結論 97 5-2 建議 98 參考文獻 99 附錄 113

    Abe, I., Iwasaki, S., Tokimoto, T.; Kawasaki, N., Nakamura, T., Tanada, S., Adsorption of fluoride ions onto carbonaceous materials. J.Colloid Interf. Sci., 275, (1), 35-39. 2004
    Aksu, Z., Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem. 38, 89-99. 2002
    Aldaco, R., Garea, A. and Irabien, A., “Fluoride recovery in a fluidized bed:Crystallization of calcium fluoride on silica sand “,indsustrial and EngineeringChemistry Research,45(2), 796-802, 2006
    Ali M.A. and Dzombak D.A., Interactions of copper, organic acids, and sulfate in goethite suspensions, Goechim. Cosmochim. Acta., 60, 5045, 1996.
    Amor, Z.; Bariou, B.; Mameri, N.; Taky, M.; Nicolas, S.; Elmidaoui, A., Fluoride removal from brackish water by electrodialysis. Desalination, 133, (3), 215-223. 2001
    Atkinson R.J., Posner A.M. and Quirk J.P., Crystal nucleation in Fe(III) solutions and hydroxide gels, Jour. Inorg. Nucl. Chem., 30, 2371, 1968.
    Bargar J.R., Brown Jr. G.E. and Parks G.A., Surface complexation of Pb(II) at oxide-water interfaces: III. XAFS determination of Pb(II) and Pb(II)-chloro adsorption complexes on goethite and alumina, Goechim. Cosmochim. Acta., 62, 193, 1998.
    Barrado E., Prieto F., Castrillejo Y., Medina J., Chemical and electrochemical characterization of lead ferrites produced in the purification of lead-bearing wastewater, Electrochimica Acta, 45, 1105, 1999.
    Barrado E., Prieto F., Garay F.J., Medina J., Vega M., Characterization of nickel-bearing ferrites obtained as by-products of hydrochemical wastewater purification processes, Electrochimica Acta, 47, 1959, 2002.
    Barrado E., Prieto F., Vega M. and Fernandez-Polanco F., Optimization of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation, Water Research, 32, 3055, 1998.
    Barrado E., Vega M., Pardo R., Grande P. and del Valle J.L., Optimization of a chemical laboratory wastewater purification method by use of a Taguchi parameter design, Water Research, 30, 2309, 1996.
    Barrow N.J., The effects of phosphate on zinc sorption by a soil, Jour. Soil Sci., 38, 453, 1987.
    Benguella, B.; Benaissa, H., Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. Water Res., 36, (10), 2463-2474. 2002
    Benjamin M.M. and Leckie J.O., Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide, Jour. Colloid and Interface Sci., 79, 209, 1981.
    Benjamin M.M., Hayes K.F., Leckie J.O., Removal of toxic metals from power-generation waste streams by adsorption and coprecipitation, Jour. Water Pollut. Control Fed., 54, 1472, 1982.
    Biswas, K., Bandhoyapadhyay, D.; Ghosh, U. C., Adsorption kinetics of fluoride on iron(III)-zirconium(IV) hybrid oxide. Adsorption, 13, (1), 83-94. 2007
    Bohn H.L., Brian L.M. and George A. O'connor, Soil Chemistry Second edition, John Wiley & Sons Inc., New York, 1985.
    Bolland M.D.A., Posner A.M. and Quirk J.P., Zinc adsorption by goethite in the absence and presence of phosphate, Aust. Jour. Soil Res., 15, 279, 1977.
    Buamah, R.; Petrusevski, B.; Schippers, J. C., Adsorptive removal of manganese(II) from the aqueous phase using iron oxide coated sand. J. Water Supply Res. T, 57, (1), 1-11. 2008
    Cengeloglu, Y., Kir, E., Ersoz, M., Removal of fluoride from aqueous solution by using red mud. Sep. Purif. Technol., 28, (1), 81-86. 2002
    Chiron, N., Guilet, R., Deydier, E., Adsorption of Cu(II) and Pb(II) onto a grafted silica: Isotherms and kinetic models. Water Res. 2003, 37, (13), 3079-3086.
    Chou, S., Huang, C., Huang, Y.-H., Effect of Fe2+ on catalytic oxidation in a fluidized bed reactor. Chemosphere, 39, (12), 1997-2006. 1999
    Chou, S., Huang, C., Huang, Y.-H., Heterogeneous and Homogeneous Catalytic Oxidation by Supported γ-FeOOH in a Fluidized-Bed Reactor: Kinetic Approach. Environ. Sci. Technol., 35, (6), 1247-1251. 2001
    Cornell R.M. and Schwertmann U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH, New York, 1996.
    Cornell, R. M.; Schwertmann, U., The Iron Oxides. second ed., Wiley-VCH: New York, 2003.
    Dinauer R.C., Weed S.B. and Dixon J.B., Minerals In Soil Environments, Chapter 8, pp.379-438, SSSA, Madison Wis., USA, 1989.
    Edwards M. and Benjamin M.M., Regeneration and reuse of iron hydroxide adsorbents in the treatment of metal-bearing wastes, Jour. Water Pollut. Control Fed., 61, 481, 1989.
    Fan, X.; Parker, D. J.; Smith, M. D., Adsorption kinetics of fluoride on low cost materials. Water Res., 37, (20), 4929-4937. 2003
    Garmes, H., Persin, F., Sandeaux, J., Pourcelly, G., Mountadar, M., Defluoridation of groundwater by a hybrid process combining adsorption and Donnan dialysis. Desalination, 145, (1-3), 287-291. 2002
    Ghorai, S., Pant, K. K., Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol., 42, (3), 265-271. 2005
    Gilles, D. G. and R. C. Loehr, “Waste Generation and Minimization in Semiconductor Industry”, Journal of Environmental Engineering, ASCE,Vol.120, No.1, pp.72-86 (1994).
    Gupta, V. K., Saini, V. K., Jain, N., Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J.Colloid Interf. Sci., 288, (1), 55-60. 2005
    Hayes K.F. and Leckie J.O., Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces, Jour. Colloid and Interface Science, 115, 564, 1987.
    Hayes K.F., Papelis C.P. and Leckie J.O., Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces, Jour. Colloid and Interface Science, 125, 717, 1988.
    Hichour, M.; Persin, F.; Sandeaux, J.; Gavach, C., Fluoride removal from waters by Donnan dialysis. Sep. Purif. Technol., 18, (1), 1-11. 2000
    Ho Y.S., Review of second-order models for adsorption systems. J. Hadard. Mater., 136, (3), 681-689. 2006
    Huang C.P. and Vane M.L., Enhancing As5+ removal by a Fe2+-treated activated carbon, Jour. WPCF., 61, 1596, 1989.
    Huang Y.H.; Hsueh C.L.; Cheng H.P.; Su L.C.; Chen C.Y., Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide. J. Hadard. Mater., 144, (1-2), 406-411. 2007
    Huang Y.H.; Hsueh C.L.; Huang, C.P.; Su L.C.; Chen C.Y., Adsorption thermodynamic and kinetic studies of Pb(II) removal from water onto a versatile Al2O3-supported iron oxide. Sep. Purif. Technol., 55, (1), 23-29. 2007
    Huang; Y.H., Huang; G.H, Chou S.S., You H.S, Perng S.H, Process for chemically oxidizing wastewater with reduced sludge production. 2000.
    Ishikawa T., Kondo Y., Yasukawa A. and Kandori K., Formation of magnetite in the presence of ferric oxyhydroxides, Corrosion Science., 40, 1239, 1998.
    Jain C.K. and Ram D., Adsorption of lead and zinc on bed sediments of the river Kali, Water Research, 31, 154, 1997.
    Jamode, A. V.; Sapkal, V. S.; Jamode, V. S., Defluoridation of water using inexpensive adsorbents. J. Indian I. Sci., 84, (5), 163-171. 2004
    Jobin R. and Ghosh M.M., Effect of buffer intensity and organic matter on the oxygenation of ferrous iron, Jour. the American Water Works Association, 64, 590, 1972.
    Juang R.S. and Wu W.L., Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials, Jour. Colloid and Interface Sci., 249, 22, 2002.
    Juang, R. S., F. C. Wu, and R. L. Tseng, “ Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels,” J. Colloids and Interface Science., 227, pp.437-444, 2000.
    Kang, W. H., Kim, E. I. And Park , J. Y.,” Fluoride removal capacity of cement past”Desalination,202(1-3),38-44 ,2007
    Kanungo S.B., Adsorption of cations on hydrous oxides of iron: II. Adsorption of Mn, Co, Ni, and Zn onto amorphous FeOOH from simple electrolyte solutions as well as from a complex electrolyte solution resembling seawater in major ion content, Jour. Colloid and Interface Sci., 162, 93, 1994.
    Katsura T., Tamaura Y. and Terada H., Treatment of the laboratory waste- waters by the magnetic separation process, Indust. Water, 233, 16, 1977.
    Kern, W., Handbook of Semiconductor Wafer Cleaning Technology,Noyes Publications, Westwood, NJ (1993).
    Knocke W.R., Van Benschoten J.E., Kearney M., Soborski A. and Reckhow D.A., Kinetics of manganese and iron oxidation by potassium permanganate and chlorine dioxide, Jour. the American Water Works Association, 83, 80, 1991.
    Kosmulski M. and Maczka E., Dilatometric study of the adsorption of heavy metal cation on goethite, Langmuir, 20, 2320, 2004.
    Kosmulski M., Standard enthalpies of adsorption of Di- and Trivalent cations on alumina, Jour. Colloid and Interface Sci., 192, 215, 1997.
    Lai C.H., Lo S.L. and Chiang H.L., Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses, Chemosphere, 41, 1249, 2000.
    Langmuir, I., The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221-2295. 1916
    Li L. and Stanforth R., Distinguishing adsorption and surface precipitation of phosphate on goethite ( -FeOOH), Jour. Colloid Interface Sci., 230, 12, 2000.
    Li, Y. H.; Wang, S.; Cao, A.; Zhao, D.; Zhang, X.; Xu, C., Luan,; Z., R., D.; Liang, J.; Wu, D.; Wei, B., Adsorption of fluoride from water by amorphous alumina supported on carbon nanotube. Chem. Phys. Lett. 350, 412-416. 2001
    Mckenzie R.M., The adsorption of molybdenum on oxide surface, Jour. Soil Res., 21, 505, 1983.
    Misawa, T.; Asami, K.; Hashimoto, K.; Shimodaira, S., MECHANISM OF ATMOSPHERIC RUSTING AND THE PROTECTIVE AMORPHOUS RUST ON LOW ALLOY STEEL. Corrs.Sci 14, (4), 279-289. 1974,
    Mjengera, H.; Mkongo, G., Appropriate deflouridation technology for use in flourotic areas in Tanzania. Phys. Chem. Earth, 28, (20-27), 1097-1104. 2003
    Nordell E., Water Treatment for industrial and other uses, Second Edition, Reinhold, New York, 1951.
    Nowack B. and Stone A.T., Adsorption of phosphonates onto the goethite -water interface*1, Jour. Colloid and Interface Sci., 214, 20, 1999.
    Nyquist, R. A.; (Eds.), R. A. K., IR Spectra of Inorganic Compounds. Academic Press: New York, 1971.
    Piekos, R.; Paslawaska, S., Fluoride uptake characteristics of fly ash. Fluoride 32, 14-19. 1999
    Pietrelli, L., Fluoride wastewater treatment by adsorption onto Metallurgical grade alumina. Ann. Chim. 95(5), 303-312. 2005
    Pivovarov S., Adsorption of Cadmium onto Hematite: Temperature Dependence, Jour. Colloid Interface Sci., 234, 1, 2001.
    Posselt H.S., Anderson F.J. and Weber W.J.J., Cation sorption on colloidal hydrous manganese dioxide, Environ. Sci. Technol., 2, 1087, 1968.
    Ramesh, A.; Lee, D. J.; J.W.C.Wong, Adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents: a review. J. Chin. Inst.Chem. Eng, 203-222. 2005
    Rietra R.P.J.J., Hiemstra T., van Riemsdijk W.H., Electrolyte anion affinity and its effect on oxyanion adsorption on goethite, Jour. Colloid and Interface Sci., 229, 199, 2000.
    Robert M.S., Francis X.W., Spectrometric Identification of Organic Compounds Sixth Edition, John Wiley & Sons Inc., New York, 1997.
    Rodda D.P., Johnson B.B. and Wells J.D., The effect of temperature and pH on the adsorption of copper(II), lead(II), and zinc(II) onto goethite, Jour. Colloid and Interface Sci., 161, 57, 1993.
    Rosenblatt D., Chlorine Dioxide: Chemical and Physical Properties., 1978.
    Sahai N. and Sverjensky D.A., Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data, Geochim. Cosmochim. Acta., 61, 2801, 1997.
    Schwertmann U., Gasser U. and Sticher H., Chromium for iron substitution in synthetic goethites, Geochim. Cosmochim. Acta., 53, 1293, 1989.
    Sen T.K., Mahajan S.P. and Khilar K.C., Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media, Colloids and Surfaces A, 211, 91, 2002.
    Shen, F., Chen, X., Gao, P., Chen, G., Electrochemical removal of fluoride ions from industrial wastewater. Chem. Eng. Sci, 58, (3-6), 987-993. 2003
    Sivasamy, A., Singh, K. P., Mohan, D., Maruthamuthu, M., Studies on defluoridation of water by coal-based sorbents. J. Chem. Technol. Biot., 76, (7), 717-722. 2001
    Skoog, D. A., Leary, J. J., Principles of Instrumental Analysis. fourth ed.; Harcourt Brace College Publishers: New York, p 252-309. 1992;
    Smith, J. M., Chemical Engineering Kinetics. third ed.; McGraw-Hill: Singapore, 1981.
    Smith, J. M., Ness, H. C. V., Introduction to Chemical Engineering Thermodynamics. fourth ed.; Mcgraw-Hill: Singapore, 1987.
    Sposito G., The Chemistry of Soils, Oxford Univ. press, New York, 1989.
    Srimurali, M., Pragathi, A.; Karthikeyan, J., Study on removal of fluorides from drinking water by adsorption onto low-cost materials. Environ. Pollut., 99, (2), 285-289. 1998
    Stumm W. and Lee G.F., Oxygenation of ferrous iron, Ind. and Engin. Chem., 53, 143, 1961.
    Stumm, W., Chemistry of the Solid-Water Interface. Wiley/Interscience: New York, 1992.
    Sujana, M. G.; Thakur, R. S.; Rao, S. B., Removal of fluoride from aqueous solution by using alum sludge. J.Colloid Interf. Sci., 206, (1), 94. 1998
    Sun, Q., and L. Yan, “ The adsorption of basic dyes from aqueous solution on modified peat-resin particle,” Water Research, 37, pp.1535-1544, 2003.
    Swedlund P.J. and Webster J.G., Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite, Applied Geochemistry, 16, 503, 2001.
    Takagi N., Konno M. and Kobayashi T., Method of Producing Hydrated Iron Oxide., US4597958, Mitsui Mining & Smelting Co., JP.
    Tamaura Y. and Katsura T., What is the process ferrite, Kagaku Kogaku Ronbun, 28, 147, 1986.
    Tamaura Y., Katsura T., Rojarayanont S., Yoshida T. and Abe H., Ferrite process: Heavy-metal ions treatment system, Water Sci. Tech., 23, 1893, 1991.
    Theis T.L., Iyer R. and Kaul L.W., Kinetic studies of cadmium and ferric- yanide adsorption of goethite, Environment Sci. Technol., 22, 1013, 1988.
    Tripathy, S. S.; Bersillon, J.-L.; Gopal, K., Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Sep. Purif. Technol., 50, (3), 310-317. 2006
    Trivedi P. and Axe L., Ni and Zn sorption to amorphous versus crystalline iron oxides: Macroscopic studies, Jour. Colloid and Interface Sci., 244, 221, 2001.
    Trivedi P., Axe L. and Dyer J., Adsorption of metal ions onto goethite: single -adsorbate and competitive systems, Colloids and Surfaces A, 191, 107, 2001.
    Wasay, S. A., Haron, M. J., Tokunaga, S., Adsorption of fluoride, phosphate, and arsenate ions on lanthanum- impregnated silica gel. Water Environ. Res., 68, (3), 295-300. 1996
    WHO, Chemical fact sheets: fluoride. In: Guidelines for drinkingwater quality (electronic resource): incorporation first addendum. third ed. ed.; Recommendations: Geneva, 2006; Vol. 1, p 375-377.
    Xie R.J. and Mackenzie A.F., Effects of sorbed orthophosphate on zinc status in three soils of eastern Canada, Jour. Soil Sci., 40, 49, 1989.
    Yang, C.L.; Dluhy, R., Electrochemical generation of aluminum sorbent for fluoride adsorption. J. Hadard. Mater., 94, (3), 239-252. 2002
    Yang, M.; Hashimoto, T.; Hoshi, N.; Myoga, H., Fluoride removal in a fixed bed packed with granular calcite. Water Res., 33, (16), 3395-3402. 1999
    Zant, P. V., Microchip Fabrication, McGraw-Hill, New York (1996).
    Zelazny L.M., Baligar V.C., Ritchey K.D. and Martens D.C., Ion strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: Triple-Layer Model, Jour. Soil Sci. Am., 61, 784, 1997.
    Zeng, H., Fisher, B.; Giammar, D. E., Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environ. Sci. Technol., 42, (1), 147-152. 2008
    Zhanga, J., Xiea, S.; Hob, Y.S., Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent. J. Hadard. Mater., article in press 2008
    內野和博, 小笠原武司, フェリイト生成法による水溶液中の重金屬イオソの除去, 川崎製鐵技術, 12, 665, 1980.
    王成財, 砷在水化鐵、鋁氧化物表面吸附特性之研究, 國立成功大學環境工程學系碩士論文, 1990.
    王興毅,鍾俐娟,陳幸雄,陳梧桐,「2000 年半導體工業年鑑」,工業技術研究院電子工業研究所(2000)。
    行政院環境保護署,「台灣地區氟的污染分佈及其對人體牙齒及健康影響之研究」,第4-66 頁,台北(1995)。
    吳一民, 灰渣類廢棄物應用於廢水中有機物去除之研究, 國立成功大學環境工程研究所碩士論文, 1997.
    吳錦昆, 林財富, 氧化鋁吸附水中砷之研究, 第二十四屆廢水處理技術研討會論文集, pp.945-950, 1999.
    李茂松,廖啟鐘,張王冠,「積體電路產業氫氟酸廢水結晶處理整合回收技術」,1998 工程實務研討會論文集(1998)。
    李敏華, 水質化學, 復漢出版社, 臺南市, 1992.
    李清屏、王浩豫、賴宏昌,「含氟廢水處理改善實例介紹」,2005 年半導體廠務技術研討會論文集。2005
    阮國棟,「氟化物之污染特性及處理技術」,工業污染防治,第29 期,第67-77 頁(1989)。
    卓靖強,「以聚電解質絮凝半導體廠廢水氟化鈣之研究」,國立台灣科技大學化學工程系碩士論文。2007
    周信輝, 都市垃圾焚化反應灰安定化之研究, 國立成功大學資源工程研究所碩士論文, 2001.
    周珊珊, 負載型FeOOH流體化床的開發:可行性、反應動力及最適化的研究, 國立交通大學環境工程研究所博士論文, 1999.
    周珊珊, 黃耀輝, 黃志彬, 以流體化床觸媒反應槽氧化苯甲酸之研究, 第二十二屆廢水處理研討會論文集, pp.573-581, 1998.
    林昌隆,「半導體含氟廢水化學處理及MF 薄膜過濾:提升去除效率之策略」,國立交通大學環境工程研究所碩士論文。2003
    林明獻,「矽晶圓半導體材料技術」,全華科技圖書,台北(2000)。
    邱作基,「積體電路工業清潔生產技術指標探討」,清潔生產資訊,第14 期,第25-43 頁(1997)。
    范煥榮, 王大中, P.R. Anderson, Removal of Cu by Iron Oxide- Coated Granular Activated Carbon, 中國環境工程學刊第十卷第三期, pp.193-199, 2000.
    孫嘉福, 駱尚廉, 以鐵氧化物覆膜石英砂去除水中六價鉻之探討, 中國土木水利工程學刊第八卷第二期, pp.263-271, 1996.
    孫嘉福, 駱尚廉, 氧化鐵之特性與應用,自來水會刊雜誌第49期, pp.47-56, 1994.
    孫嘉福, 駱尚廉, 氧化鐵之特性與應用,自來水會刊雜誌第49期, pp.47-56, 1994.
    高偉峰、鄧昭芳、李建賢,「半導體工業最重要的毒性物質:氫氟酸中毒」,J Emerg Crit Care Med., Vol.10, No.1, pp.1-10 (1999).
    張明發 , 「半導體業含氟廢水處理之研究 國立台灣科技大學」 化學工程系碩士論文。2002
    張明發 , 「半導體業含氟廢水處理之研究 國立台灣科技大學」 化學工程系碩士論文。2002
    張俊彥,「積體電路製程及設備技術手冊」,中華民國經濟部技術處,台北(1996)。
    張毓寬, 鉻污泥資源化基礎研究, 國立成功大學資源工程研究所碩士論文, 2002.
    莊永豐,「Wastewater Treatment Recycle and Reuse in UMC」,專題演講,國立台灣科技大學化工系,台北(2001.3.20)
    莊達人,「VLSI 製造技術」,高立圖書,台北(1998)。
    許明華、馬念和、阮國棟,「氟化物水污染處理技術及管理策略」,工業污染防治,第60 期,第16-27 頁(1997)。
    陳奎麟、林政紀、劉凱溢,「降低氟系廢水氯化鈣費用處理費用實例研究」,2003 年半導體廠務技術研討會論文集。2003
    陳宥伸, 陳宏達, 吳俊毅, 蔡敏行, 張祖恩, 鐵氧磁體法處理垃圾焚化灰渣浸漬廢水之研究, 第二十八屆廢水處理技術研討會論文集, D-28, 2003.
    郭哲榮、魏善修、陳建清、吳忠杰,「含氟廢水處理成本降低與SS 改善案例探討」,522003 年半導體廠務技術研討會論文集。2003
    陳嘉和 , 「流體化床結晶技術在含氟廢水處理之應用」, 長庚大學化學工程研究所碩士論文。2001
    黃任偉, 粒狀氫氧化鐵吸附地下水中砷之研究, 國立成功大學環境工程研究所碩士論文, 2002.
    黃志彬、邵信、江萬豪、邱顯盛、烏春梅、李谷蘭,「新竹科學園區半導體及光電製造業廢水處理設施績效提昇輔導計畫」,國立交通大學環境工程所。
    黃耀輝, 周珊珊, 黃志彬, 以流體化床觸媒反應槽氧化笨甲酸之研究, 第二十二屆廢水處理研討會論文集, pp.573-581, 1998.
    樓基中, 涂耀仁, 張健桂, 分段式磁鐵化法處理含多種重金屬廢水, 第二十八屆廢水處理技術研討會論文集, C-11, 2003.
    蔡長益,「以鐵被覆廢觸媒去除水中氟離子之研究」,臺灣工業技術學院化學工程系碩士論文(1997)。
    鄭仲凱, 氫氧化鐵吸附水中砷之動力與平衡研究, 國立成功大學環境工程研究所碩士論文, 2003.
    賴進興, 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究, 國立臺灣大學環境工程研究所博士論文, 1995.
    駱尚廉, 鄭宏德, 林正芳, 李達源, 氧化鐵覆膜濾料對重金屬吸附之研究, 中國土木水利工程學刊第六卷第一期, pp.101-110, 1994.
    謝政宏,「晶圓廠含氟廢水加藥模式之探討」,國立交通大學環境工程研究所碩士論文。2006
    鍾瑞嬰, 磷酸根及重金屬離子在針鐵礦上之吸附平衡, 元智大學化學工程研究所碩士論文, 2002.

    無法下載圖示 校內:2012-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE