| 研究生: |
石明隴 Shih, Ming-Lung |
|---|---|
| 論文名稱: |
高強度鋼管混凝土柱數值模擬之研究 Study of Numerical Simulation of CFT Column with High Strength Concrete |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 圍壓 、寬厚比 、高強度鋼管混凝土 、軸壓與彎矩 、有限元素 |
| 外文關鍵詞: | Finite Element, High-Strength Concrete-Filled Steel Tube, the ratio of width over thickness, confinement pressure, Axial Force and Bending Moment |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是利用ABAQUS分析探討高強度鋼管混凝土(CFT)受到固定軸力下施加純彎矩行為,其中採用高強度混凝土(HSC),並將分析結果與實驗數據比較,藉此了解鋼管混凝土在此行為下,鋼管能提供混凝土多少圍束效果,以及混凝土在受多大軸力下,混凝土軟化情形,更進一步希望能了解不同幾何斷面,對力學行為有何影響。本文中試體可分成六類,分別為圓形斷面(徑厚比40)、圓形斷面(徑厚比70)、方形未加勁斷面(寬厚比40)、方形未加勁斷面(寬厚比70)、方形加勁斷面(寬厚比40)及方形加勁斷面(寬厚比70),在吳逸民(2001)論文中,利用普通混凝土,對圓形及方形未加勁斷面已有初步的模擬,在陳致良(2002) 論文中,又增加22個普通混凝土試體加以模擬,,故本文採用吳逸民(2001)與陳致良(2002)的模擬方式,改以高強度混凝土取代普通混凝土進行分析。
由Moment-curvature圖知,結果可分為徑厚比或寬厚比40與70來比較,寬厚比40的強度優於寬厚比70的強度;相同構造的試體,軸力比愈大,韌性則愈差;圓形斷面試體的韌性最佳,其次為方形加勁試體,再其次為方形未加勁試體。圍束力方面,寬厚比40的強度優於寬厚比70的強度;相同構造的試體,軸力比愈大,在寬厚比70時圍束力愈佳,但在寬厚比40時有不佳的趨勢,其原因為高強度混凝土的脆性影響;圓形斷面試體的圍束力最佳,其次為方形加勁試體,再其次為方形未加勁試體。分析結果可知,當試體受到彎矩作用時,試體下側受到拉力作用,明顯影響鋼管圍束效果,方形未加勁斷面因為幾何不連續影響最大,並且有局部挫屈現象,為了改善方形未加勁斷面,採用八角形加勁方法。由分析結果整理比較,可以了解混凝土軟化狀況,隨著施加固定軸力增加,混凝土軟化越為明顯。
This thesis uses ABAQUS to analysis and study concrete filled steel tubes (CFT) .And see the behavior when it is loaded by bending moment under axial force. We use the high-strength concrete (HSC) and compare between the experiment data and analysis result. By this way we can understand the CFT behavior under the condition. Steel tube can provide confinement to the concrete, and concrete has softening phenomenon. Further, we wish to understand the influence of mechanics behavior between different geometry section. In the thesis we separate specimen to six types. They are circular section (the ratio of diameter over thickness 40 and 70), square untied section (the ratio of width over thickness 40 and 70) , square untied section (the ratio of width over thickness 40 and 70) .In the thesis of Wu IM(2001) ,he had the simulation for circular section and square untied section. In the thesis of Chen CL (2002), he added twenty-two specimens to simulate. So in the thesis, we use their approach of simulation, and use HSC instead of normal-strength concrete (NSC).
In the diagram of moment –curvature, we can compare the result with the ratio of diameter (width) over thickness 40 and 70. The strength of the ratio of diameter (width) over thickness 40 is better than The strength of the ratio of diameter (width) over thickness 70. If the structure is the same ,the more axial force, the worse toughness. The toughness of circular section is best, the next is the square tied section, the next is square untied section. The confinement of the ratio of diameter (width) over thickness 40 is better than the confinement of the ratio of diameter (width) over thickness 70. If the structure is the same ,the more axial force, the better confinement in the ratio of diameter (width) over thickness 70, but the worse confinement in the ratio of diameter (width) over thickness 40. The reason is the influence of concrete’s brittleness. The confinement of circular section is best, the next is the square tied section, the next is square untied section. From the result, we can know when specimens are loading by bending moment ,the lower part is acted by tension and influence the effect of the confinement obviously. Square untied section have geometry discontinuity and have the phenomenon of local buckling. In order to improve the problem, we use the approach of octagonal tied. From the result, we can know the phenomenon of softening . With the increment of the axial force, the concrete softens obviously.
1、 Hibbitt, Karlsson, and Sorensen, Inc, ABAQUS User’s Manual ,version 6.3, Providence, Rohode Island, 2003.
2、 BSI, Eurocode 4:Design of Composite Steel and Concrete Structures, 1994.
3、 Chen, W. F. and Saleeb, A. F., Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling, Second, Revised Edition, Elsevier, 1994.
4、 Chen, W. F. and Han, D. J., Plasticity For Structural Engineers, 1995.
5、 Nawy, E. G., Reinforced Concrete a Fundamental Approach , 3rd Edition, 1996, pp.46.
6、 Ge, H. B. and Usami, T., “Strength of Concrete-Filled Thin-Walled Steel Box Columns: Experiment”, Journal of Structural Engineering, Vol. 118, No. 11, November 1992, pp.3036-3054.
7、 Ge, H. B. and Usami, T., “Strength Analysis of Concrete-Filled Thin-Walled Steel Box Columns”, Journal of Construct Steel Research, Vol. 30, 1994, pp. 259-281.
8、 Mander, J. B., Priestly, M. J. N. and Park, R., “Theoretical Stress-Strain Model For Confined Concrete”, Journal of Structural Engineering, Vol. 114, No. 8, August 1988, pp. 1804-1823.
9、 Menétrey, P., and Willam, K. J.,“Triaxial Failure Criterion for Concrete and Its Generalization”, ACI Structural Journal, Vol. 92, No. 3, May-June 1995, pp. 311-318.
10、Richart, F. E., Brandtzaeg, A. and Brown, R. L. “A Study of the Failure of Concrete under Combined Compressive Stresses”, Bulletin 185, Univ. of Illinois Engineering Experimental Station, Champaign, Ill, 1928.
11、Schneider, S. P., “Axially Loaded Concrete-Filled Steel Tubes”, Journal of Structural Engineering, Vol. 124, No. 10, October 1998, pp. 1125-1138.
12、 Saenz, L. P., Discussion of “Equation for the Stress-Strain Curve of Concrete” by Desayi, P. and Krishnan, S., ACI Journal, Vol. 61, No. 9, 1964, pp. 1229-1235.
13、Sheu, M. S., Figure and Tables For Behavior of Reinforced Concrete, Class Notes, Department of Architecture, National Cheng Kung University Tainan, Taiwan, R.O.C., 2001.
14、Uy, B., “Local and Post-local Buckling of Concrete Filled Steel Welded Box Columns”, Journal of Construct Steel Research, Vol. 47, 1998, pp. 47-72.
15、Shah, S.P. and Ahmad, S.H., High Performance Concrete : Properties and Applications, McGraw-Hill,Inc.,1994.
16、ACI Committee 363,”State-of-Art Report on High Strength Concrete ”ACI Journal, 1992, pp. 22-23.
17、Cusson D., and Patrick P., ”Stress-Strain Model for Confined High-Strength Concrete”, Journal of Structural Engineering, Vol. 121, No.3,Mar, 1995, pp. 468-477.
18、Perenchio, W.F., and Klieger, P.,”Some Physical Properties of High Strength
Concrete,” Research and Development Bulletin No.RD056.01T,Portland Cement Association, Skokie, 1978, pp. 7.
19、 吳明憲,“加勁鋼管混凝土構材受軸力行為之數值分析”,國立成功大學土木工程系,碩士論文,民國八十九年六月。
20、吳逸民, “鋼管混凝土柱數值模擬之研究”,國立成功大學土木工程系,碩士論文,民國九十年六月。
21、陳致良,”鋼管混凝土柱受軸壓與彎矩之行為分析”,國立成功大學土木工程學系,碩士論文,民國九十一年六月。
22、黃炯憲,鍾立來,葉勇凱,葉錦勳,盧煉元和劉季宇,“鋼管混凝土構材研究之回顧”,國家地震工程研究中心研究報告,NCREE-98-012,民國八十七年十一月。
23、劉季宇,葉勇凱,黃炯憲,蔡克銓和孫維隆,“方形加勁鋼管混凝土柱受軸壓與彎矩之行為研究”,國家地震工程研究中心研究報告,NCREE-00-008,民國八十九年八月。
24、羅益東,”高強度混凝土軸壓下之力學行為”,國立交通大學土木工程學系,碩士論文,民國八十四年七月。
25、劉柏村,”高強度鋼管混凝土柱樑柱行為探討”, 國立交通大學土木工程學系,碩士論文,民國九十一年七月。