| 研究生: |
游硯評 Yu, Yen-Ping |
|---|---|
| 論文名稱: |
熱交換器設計對史特靈熱泵性能的影響 Effects of Heat Exchangers Design on Performance of Stirling Heat Pump |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 史特靈熱泵 、熱交換器 、設計 、實驗驗證 、非理想絕熱模型 |
| 外文關鍵詞: | Stirling heat pump, Heat exchanger, Design, Experimental validation, Non-ideal adiabatic model |
| 相關次數: | 點閱:122 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討史特靈熱泵之冷、熱端熱交換器對其性能的影響,並實際改善史特靈熱泵之性能係數。在理論方面,本研究之理論模型為參考非理想絕熱模型,並考慮工作流體流經腔室產生之壓降、腔室間截面積驟變產生之壓降、工作流體與壁面的熱傳、腔室壁面間的熱傳和壁面與水套內流體的熱傳,和本研究設計之熱交換器的影響,以進行理論模型的建立,再針對不同的 冷、熱端熱交換器對史特靈熱泵性能的影響進行分析與比較;在實驗方面,透過理論模型的分析進行冷、熱端熱交換器的設計,再針對不同的冷、熱端熱交換器對史特靈熱泵性能的影響進行實驗量測、分析以及比較,最後,將實驗結果與理論模型進行驗證。本研究探討的冷端熱交換可分為三種:(1) Type 1法蘭搭配銅管熱交換器、(2) Type 2內外鰭片式熱交換器、(3) Type 3內外鰭片式熱交換器搭配熱沉。熱端熱交換器則可分為兩種:(1) 60片內鰭片之內外鰭片式熱交換器(60 Fins)、(2) 120片內鰭片之內外鰭片式熱交換器(120 Fins)。當冷端熱交換器為Type 3、熱端熱交換器為120 Fins、填充壓力為4 bar和轉速為500 rpm時,COP_M可高達2.31。
In this study, cold and hot sides of a new heat exchanger in a Stirling heat pump are re-designed to get higher performance. The heat absorption rate through surfaces of the cold side, the heat-rejection rate through surfaces of the hot side, and coefficient of performance (COP) are analyzed with the aid of the thermodynamic model. Three types of heat exchangers in the cold side and two types in the hot side are analyzed and are studied to choose which one gives the heat pump the highest performance. The thermodynamic model shows the new heat exchanger Type 3 in the cold side and 120 Fins in the hot side, and COP can reach up to 2.31 at 4 bar charged pressure and 500 rpm rotational speed.
[1] 左然、施明恒、王希麟和徐謙,可再生能源概論,第二版,機械工業出版社,北京,2015。
[2] 姚楊,水循環熱泵空調系統設計,第二版,化學工業出版社,北京,2011。
[3] 陳東,熱泵技術手冊,第二版,化學工業出版社,北京,2019。
[4] H. Hachem, R. Gheith, F. Aloui and S.B. Nasrallah, “Technological Challenges and Optimization Efforts of the Stirling Machine: A Review,” Energy Conversion and Management, Vol. 171, pp. 1365-1387, 2018.
[5] B. Rutczyk and I. Szczygieł, “Development of Internal Heat Transfer Correlations for the Cylinders of Reciprocating Machines”, Energy, Vol. 230, 120795, 2021.
[6] 謝宗晏,史特靈熱泵之設計與理論分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2017。
[7] 陳宏信,瓩級史特靈熱泵之實驗與理論分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2019。
[8] M.H. Ahmadi, M.A. Ahmad, A.H. Mohammadi, M. Mehrpooya and M. Feidt, “Thermodynamic Optimization of Stirling Heat Pump Based on Multiple Criteria,” Energy Conversion and Management, Vol. 80, pp. 319-328, 2014.
[9] M.H. Ahmadi, M.A. Ahmad, R. Bayat, M. Ashouri and M. Feidt, “Thermo - Economic Optimization of Stirling Heat Pump by Using Non - Dominated Sorting Genetic Algorithm,” Energy Conversion and Management, Vol. 91, pp. 315-322, 2015.
[10] T.M. Gadelkareem, A.M.T.A. EldeinHussin, G.M. Hennes and A.A. El-Ehwany, “Stirling Cycle for Hot and Cold Drinking Water Dispenser,” International Journal of Refrigeration, Vol. 99, pp. 126-137, 2019.
[11] C.H. Cheng, H.S. Yang and H.X. Chen, “Development of a Beta - Type Stirling Heat Pump with Rhombic Drive Mechanism by a Modified Non - ideal Adiabatic Model,” Internal Journal of Energy Research, Vol. 44, pp. 5197-5208, 2020.
[12] T.M. Tveit, “Application of an Industrial Heat Pump for Steam Generation Using District Heating as a Heat Source,” Proceedings of 12th IEA Heat Pump Conference, Rotterdam, 2017.
[13] C. Haikarainen, T.M. Tveit, H. Saxén and R. Zevenhoven, “Simulation of Pressure Imbalance Phenomena in a Double - Acting α - Cycle Stirling Engine,” Energy Conversion and Management, Vol. 221, 113172, 2020.
[14] C.A.P. Zevenhoven, U. Khan, C. Haikarainen, L. Saeed, T.M. Tveit and H. Saxén, “Performance Improvement of an Industrial Stirling Engine Heat Pump,” Proceedings of 33rd International Conference on Efficiency, Vol. 33, pp. 1042-1053, 2020.
[15] U. Khan, R. Zevenhoven and T.M. Tveit, “Evaluation of the Environmental Sustainability of a Stirling Cycle - Based Heat Pump Using LCA,” Energies, Vol. 13, 4469, 2020.
[16] E. Açıkkalp, S.Y. Kandemir and M.H. Ahmadi, “Solar Driven Stirling Engine - Chemical Heat Pump - Absorption Refrigerator Hybrid System as Environmental Friendly Energy System,” Journal of Environmental Management, Vol. 232, pp. 455-461, 2019.
[17] G. Dogkas, E. Rogdakis and P. Bitsikas, “3D CFD Simulation of a Vuilleumier Heat Pump,” Applied Thermal Engineering, Vol. 153, pp. 604-619, 2019.
[18] H. Chen, P. Hofbauer and J.P. Longtin, “Multi - Objective Optimization of a Free - Piston Vuilleumier Heat Pump Using a Genetic Algorithm,” Applied Thermal Engineering, Vol. 167, 114767, 2020.
[19] 王啟川,熱交換器設計,初版,五南圖書出版,臺北,2007。
[20] W.T. Ji, A.M. Jacobi, Y.L. He and W.Q. Tao, “Summary and Evaluation on the Heat Transfer Enhancement Techniques of Gas Laminar and Turbulent Pipe Flow,” International Journal of Heat Mass Transfer, Vol. 111, pp. 467-483, 2017.
[21] M.O. Garg, H. Nautiyal, S. Khurana and M.K. Shukla, “Heat Transfer Augmentation Using Twisted Tape Inserts: A Review,” Renewable and Sustainable Energy Reviews, Vol. 63, pp. 193-225, 2016.
[22] E.I. Eid, R.A. Khalaf-Allah, A.M. Soliman and A.S. Easa, “Performance of a Beta Stirling Refrigerator with Tubular Evaporator and Condenser Having Inserted Twisted Tapes and Driven by a Solar Energy Heat Engine,” Renewable Energy, Vol. 135, pp. 1314-1326, 2019.
[23] F. Xin, Z. Liu, S. Wang and W. Liu, “Study of Heat Transfer in Oscillatory Flow for a Stirling Engine Heating Tube Inserted with Spiral Spring,” Applied Thermal Engineering, Vol. 143, pp. 182-192, 2018.
[24] U. Munir, A.N. shah, S.A.R. Gardezi, Z. Anwar and M.S. Kamran, “Oscillatory Heat Transfer Correlation for Annular Mini Channel,” Case Studies in Thermal Engineering, Vol. 21, 100664, 2020.
[25] S.W. Chang, K.F. Chiang, Y. Zheng, C.C. Huang and P.H. Chen, “Detailed Heat Transfer Measurements of Curved Fin Channels,” Heat Transfer Engineering, Vol. 29, pp. 849-863, 2008.
[26] O.K. Siddiqui and S.M. Zubair, “Efficient Energy Utilization Through Proper Design of Microchannel Heat Exchanger Manifolds: A Comprehensive Review,” Renewable and Sustainable Energy Reviews, Vol. 74, pp. 969-1002, 2017.
[27] C.H. Cheng and Y.H. Tan, “Numerical Optimization of a Four - Cylinder Double - Acting Stirling Engine Based on Non - Ideal Adiabatic Thermodynamic Model and SCGM Method,” Energies, Vol. 13(8), 2020.
[28] C.H. Cheng and H.S. Yang, “Optimization of Rhombic Drive Mechanism Used in Beta - Type Stirling Engine Based on Dimensionless Analysis,” Energy, Vol. 64, pp. 970-978, 2014.
[29] A.J. Organ, The Regenerator and Stirling Engine, 1st Ed., United Kingdom, London: Mechanical Engineering, 1997.
[30] S. Choi, K. Nam and S. Jeong, “Investigation on the Pressure Drop Characteristics of Cryocooler Regenerators under Oscillating Flow and Pulsating Pressure Conditions,” Cryogenics, Vol. 44, pp. 203-210, 2004.
[31] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers, 1st Ed., New York, Plenum Press, 1997.
[32] E. Fried and I.E. Idelchik, Flow Resistance: A Design Guide for Engineers, 1st Ed., United States of America, CRC Press, 1989.
[33] R.W. Fox, A.T. Mcdonald and P.J. Pritchard, Introduction to Fluid Mechanics, 6th Ed., United States of America, John Wiley & Sons, 2003.
[34] A. Bejan, Convection Heat Transfer, 4th Ed., United States of America, John Wiley & Sons, 2013.
[35] W.M. Rohsenow, J.P. Hartnett and Y.I. Cho, Handbook of Heat Transfer, 3rd Ed., United States of America, McGraw Hill, 1998.
[36] F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th Ed., United States of America, John Wiley & Sons, 2002.