研究生: |
呂鴻毅 Lu, Hung-Yi |
---|---|
論文名稱: |
都會區大氣中細懸浮微粒排放來源解析及其對空氣品質之影響 Source Apportionment of Atmospheric PM2.5 and Their Impact on Air Quality in Urban Area |
指導教授: |
吳義林
Wu, Yee-Lin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 121 |
中文關鍵詞: | 細懸浮微粒 、排放源解析 、化學平衡模式 、光化網格模式 、空氣品質 |
外文關鍵詞: | PM2.5, Source Apportionment, CMB, CMAQ, Air Quality |
相關次數: | 點閱:101 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細懸浮微粒(Fine particulate matters, PM2.5)已被證實為都會區主要空氣污染物之一,許多研究也指出PM2.5會危害人體健康,並且是造成能見度不佳之主因。台灣近年來空氣品質受到PM2.5嚴重影響,因此台灣於2012年5月14日頒布了新的PM2.5空氣品質標準,並於同年4月24日頒布了大氣中PM2.5的標準採樣分析方法(NIEA A205.11C)。為加速改善台灣都會區PM2.5之空氣品質,必須採取適當且有效的管制策略,而各項管制策略則應建立在完整的PM2.5污染特徵分析及排放源解析之基礎上。因此,本研究以臺南都會區為例,分析大氣中PM2.5濃度長期變化趨勢、污染特徵以及不同排放源對空氣品質之影響。
本研究使用箱形圖(box plots)和時間序列分析(time series analysis)來進行長期趨勢分析;於轄區內以PM2.5手動標準方法進行質量濃度採樣及化學成分分析,並運用CMB(Chemical Mass Balance)受體模式進行污染源解析;最後以CMAQ (Community Multiscale Air Quality)模式模擬境外長程傳輸、跨域傳輸、當地污染源與鄰近縣市大型污染源分別對臺南市PM2.5空氣品質之影響分析。
從長期趨勢分析結果顯示,臺南市近十年(2010-2019)來PM2.5年平均濃度(10年平均為29.5 μg/m3)皆不符合15 μg/m3之空氣品質標準,但整體而言是呈現逐年下降之趨勢,從2010年的36.8 μg/m3降至2019年的22.1 μg/m3,十年平均改善率達39.9%。
本研究於2013年在臺南市進行大氣中PM2.5質量濃度的採樣,並分析水溶性離子、碳成分和金屬成分,以評估PM2.5的污染特徵;此外,使用CMB受體模式來解析PM2.5可能來源及其貢獻。根據化學成分分析,衍生性氣膠(NH4+、NO3–及SO42–)在春季和冬季時佔有較高之比例,分別佔PM2.5質量的50%和60%,但夏季時則僅佔40%。根據CMB模式的結果,臺南市PM2.5的主要貢獻來源依序是交通排放(31.5%)、硫酸銨(25.5%)、硝酸銨(12.5%)和地殼元素(11%)。因此,為改善臺南市的PM2.5,優先控制的污染物(或污染源)主要為原生性PM2.5(營建工地和道路揚塵)、NOx(柴油車排放)和SOx(燃料)。
此外,本研究以2010年為基準年,運用MM5-CMAQ模式來模擬境外長程傳輸(台灣境外)、跨域傳輸(臺南轄境外)及當地污染源(點、線和面源)對PM2.5空氣品質之影響。從模式模擬結果顯示,以全年平均而言,臺南市PM2.5最大影響來自鄰近城市的跨域傳輸,約佔34.2%,境外長程傳輸和當地排放源之影響則各佔約32.9%;而就當地排放源而言,影響最大的是面源(18.6%),其次是線源(7.7%)和點源(6.6%)。因此,要控制臺南市本身的PM2.5污染源,重點應放在面源,如營建工地及道路揚塵,其次是線源和點源。
除上述污染源外,本研究再進一步針對臺南市轄內主要排放源及鄰近外縣市大型污染源進行模擬,解析各主要排放源對臺南市PM2.5之污染影響。本研究依據台灣排放量資料庫(TEDS9.0-2013年)篩選臺南市轄內PM2.5排放量較大之9種行業別,分別為:(1)化學材料製造業、(2)鋼鐵業、(3)電力業、(4)使用生煤工廠、(5)柴油車、(6)二行程機車、(7)餐飲業、(8)建築/道路揚塵、(9)露天燃燒;另篩選位於台灣中部地區即臺南市上風區之三個大型污染源,包括:(10)臺中火力發電廠、(11)六輕工業區、以及(12)中龍鋼鐵,運用CMAQ-DDM模式模擬上述重要污染源對臺南市PM2.5空氣品質的影響。從全年的平均模擬結果顯示,柴油車排放的影響量是最高的,為1.06 μg/m3,其次為臺中電廠排放之影響為0.87 μg/m3,再其次為建築/車行揚塵的排放影響為0.80 μg/m3,影響量最低的為露天燃燒排放。這些研究結果可用於後續制定各項空氣品質管制策略之參考。
Fine particulate matters (PM2.5) has been identified as one of the major air pollutants in urban areas. With several studies pointing out a direct link between PM2.5 and the adverse effects on public health, which are also responsible for the deterioration of visibility. In recent years, Taiwan's air quality has been seriously affected by fine particulate matter (PM2.5). Therefore new PM2.5 air quality standards were promulgated in Taiwan on 14th May 2012, as well as the standard sampling and analytical method for atmospheric PM2.5 (NIEA A205.11C) on 24th April 2012. In order to improve the air quality of PM2.5 in the urban area of Taiwan as quickly as possible, the appropriate and effective control strategies must be adopted, which should be based on the comprehensive analyses of characteristics and source apportionment of PM2.5. This study takes Tainan city as researching area to analyze atmospheric PM2.5 characteristics, long-term trends and impacts of various sources on air quality.
In this study, a box plot and time series analysis was used for long-term trend analysis of PM2.5 concentration; the atmospheric PM2.5 manual standard sampling method was performed for mass concentration and chemical composition analysis, while using Chemical Mass Balance (CMB) receptor model for pollution source apportionment. Finally, Community Multi-Scale Air Quality (CMAQ) model was used to simulate the impacts of PM2.5 various sources on air quality, including long-range and trans-boundary transport, native sources, as well as large-scale pollution sources from neighboring counties and cities of Tainan City.
The long-term trend analysis shows that the levels of PM2.5 (averaged at 29.5 μg m-3) in Tainan City for ten years (2010-2019) were above the yearly average standards of 15 μg m-3, showing non-attainment status. Overall, the results show a decreasing trend which was from 36.8 μg m-3 in 2010 to 22.1 μg m–3 in 2019 in the levels of PM2.5 in Tainan atmosphere in the period of ten years. Over the past decade, the average concentration improvement rate reached 39.9%.
The characteristics of PM2.5 in Tainan City during 2013 were evaluated by measuring the mass concentration of PM2.5 and analyzing the water-soluble ionic, carbon, and metal components. Additionally, CMB receptor model was used to identify possible sources of PM2.5 and their contributions. According to chemical composition analysis, secondary aerosols (NH4+, NO3–, and SO42–) contributed approximately 50% and 60% of PM2.5 mass in spring and winter respectively; but were responsible about 40% by mass in summer. From the results of CMB model, the main contribution sources to the PM2.5 in Tainan are traffic emissions (31.5%), ammonium sulfate (25.5%), ammonium nitrate (12.5%), and crustal elements (11%). Consequently, to improve PM2.5 of Tainan City, the priority control pollutants (or sources) are primary PM2.5 (construction sites and road dust by vehicles), NOx (diesel vehicle emissions), and SOx (fuels).
In addition, this study used a coupled MM5-CMAQ (Community Multiscale Air Quality Model coupled with Mesoscale Modeling System) modeling system to simulate the impacts of long-range transport (outside of Taiwan), trans-boundary transport (outside of Tainan) and local pollution sources (point, line and area sources) on air quality of PM2.5 in Tainan City. The results of simulation indicated that the highest contribution on PM2.5 in Tainan City was from trans-boundary pollution from neighboring cities (34.2%), while long-range transport and local emissions from Tainan each contributed a fraction of approximately 32.9%. In terms of local sources, the highest influence is from area sources (18.6%), followed by line sources (7.7%) and point sources (6.6%). Thus, to control local PM2.5 in Tainan City, the focus should be on area sources, such as construction and road dust, followed by line and point sources.
Other than the sources above, this study further distinguished various sources of PM2.5, and focused on analysis of PM2.5 sources within Tainan City in an effort establish the contribution of large-scale pollution sources within the city as well as those from neighboring counties and cities. During this study, the nine important emission sources in Tainan City were investigated from TEDS9.0 (Taiwan Emission Data System, 2013): (1) the Chemical manufacturing industry, (2) the iron and steel industry, (3) the power industry, (4) manufacturing of coal-based products, (5) diesel vehicles, (6) two-stroke scooters, (7) catering, (8) construction/road dust, and (9) open burning. Three large-scale pollution sources in the central region of Taiwan were investigated as well, including: (10) the Taichung Power Plant, (11) the Formosa Petrochemical Corporation (FPCC) Sixth Naphtha Cracking Industry, and (12) the Dragon Steel Company, all of which are located on the windward side of Tainan City. The CMAQ-DDM (Community Multi-scale Air Quality with Decoupled Direct Method) model was used to simulate the impact of the mentioned sources on Tainan’s air quality. The results for the monthly contributions from the different sources averaged over a one year period indicated that diesel vehicles are the largest source, effect up to 1.06 μg m–3, followed by the Taichung Power Plant, which had 0.87 μg m–3, the construction industry and road dust emissions, with 0.80 μg m–3, and with open burning of waste having the lowest contribution. These results can be applied to facilitate the development of follow-up air quality control strategies.
Aikawa, M., Ohara, T., Hiraki, T., Oishi, O., Tsuji, A., Yamagami, M., Murano, K., and Mukai, H., (2010)“Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent”,Atmospheric Environment Vol. 44, pp. 381-391.
Akimoto, H. and Narita, H. (1994). Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in asia with 1× 1 resolution. Atmos. Environ. 28: 213–225.
Alghamdi, M.A., Almazroui, M., Shamy, M., Redal, M.A., Alkhalaf, A.K., Hussein, M.A. and Khoder, M.I. (2015). Characterization and elemental composition of atmospheric aerosol loads during springtime dust storm in western Saudi Arabia. Aerosol Air Qual. Res. 15: 440–453.
Appel, K.W., Bhave, P.V., Gilliland, A.B., Sarwar, G. and Roselle, S.J. (2008). Evaluation of the community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II—particulate matter. Atmos. Environ. 42: 6057–6066.
Arnold, J., Dennis, R. and Tonnesen, G. (2003). Diagnostic evaluation of numerical air quality models with specialized ambient observations: Testing the Community Multiscale Air Quality modeling system (CMAQ) at selected SOS 95 ground sites. Atmos. Environ. 37: 1185–1198.
Begum, B.A., Biswas, S.K. and Hopke, P.K. (2007). Source Apportionment of Air Particulate Matter by Chemical Mass Balance (CMB) and Comparison with Positive Matrix Factorization (PMF) Model. Aerosol Air Qual. Res. 7: 446–468.
Bell, M.L. (2012). Assessment of the health impacts of particulate matter characteristics. Res. Rep. Health Eff. Inst. 161: 5–38.
Bell, M.L., Dominici, F., Ebisu, K., Zeger, S.L. and Samet, J.M. (2007). Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies. Environ. Health Perspect. 989–995.
Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M. and Dominici, F. (2009). Hospital Admissions and Chemical Composition of Fine Particle Air Pollution. Am. J. Respir. Crit. Care Med. 179: 1115–1120.
Betha, R. and Balasubramanian, R. (2018). Corrigendum to “PM2.5 emissions from hand-held sparklers: Chemical characterization and health risk assessment”[Aerosol Air Qual. Res. 14: 1477−1486]. Aerosol Air Qual. Res. 18: 560–563.
Boldo, E., Medina, S., Le Tertre, A., Hurley, F., Mücke, H.G., Ballester, F. and Aguilera, I. (2006). Apheis: Health Impact Assessment of Long-term Exposure to PM2.5 in 23 European Cities. Eur. J. Epidemiol. 21: 449–458.
Boylan, J.W. and Russell, A.G. (2006). PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 40: 4946–4959.
Byun, D. and Schere, K.L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59: 51–77.
Byun, D.W., Ching, J.K., Novak, J. and Young, J. (1998). Development and implementation of the EPA's Models-3 initial operating version: Community Multi-scale Air Quality (CMAQ) Model. In Air pollution modeling and its application XII, Gryning, S.E. and Chaumerliac, N. (Eds.), Springer US, Boston, MA, pp. 357–368.
Chang, C.C., Yuan, C.S., Li, T.C., Su, Y.L., Tong, C. and Wu, S.P. (2018). Chemical characteristics, source apportionment, and regional transport of marine fine particles toward offshore islands near the coastline of northwestern Taiwan Strait. Environ. Sci. Pollut. Res. 25: 32332–32345.
Chang, D., Song, Y. and Liu, B. (2009a). Visibility trends in six megacities in China 1973–2007. Atmos. Res. 94: 161–167.
Chang, K.H., Yu, J.Y., Chen, T.F. and Lin, Y.P. (2009b). Estimating Taiwan biogenic VOC emission: Leaf energy balance consideration. Atmos. Environ. 43: 5092–5100.
Chang, S.Y., Chou, C., Liu, S. and Zhang, Y. (2013). The characteristics of PM2.5 and its chemical compositions between different prevailing wind patterns in Guangzhou. Aerosol Air Qual. Res. 13: 1373–1383.
Chang, Y.C., Lee, W.J., Wu, T.S., Wu, C.Y. and Chen, S.J. (2014). Use of water containing acetone-butanol-ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel. Energy 64: 678–687.
Chao, H.R., Lin, D.Y., Chen, K.Y., Gou, Y.Y., Chiou, T.H., Lee, W.J., Chen, S.J. and Wang, L.C. (2014). Atmospheric concentrations of persistent organic pollutants over the Pacific Ocean near southern Taiwan and the northern Philippines. Sci. Total Environ. 491: 51–59.
Chen, C.H., Chuang, Y.C., Hsieh, C.C. and Lee, C.S. (2019). VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan. Atmos. Pollut. Res., in Press.
Chen, M.L., Mao, I.F. and Lin, I.K. (1999). The PM2.5 and PM10 particles in urban areas of Taiwan. Sci. Total Environ. 226: 227–235.
Chen, T.F., Chang, K.H. and Tsai, C.Y. (2014). Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmos. Environ. 89: 1–9.
Chen, T.F., Tsai, C.Y. and Chang, K.H. (2013). Performance evaluation of atmospheric particulate matter modeling for East Asia. Atmos. Environ. 77: 365–375.
Chen, W.H., Lee, K.H., Mutuku, J.K. and Hwang, C.J. (2018). Flow dynamics and PM2.5 deposition in healthy and asthmatic airways at different inhalation statuses. Aerosol Air Qual. Res. 18: 866–883.
Chernyshev, V., Zakharenko, A., Ugay, S., Hien, T., Hai, L., Kholodov, A., Burykina, T., Stratidakis, A., Mezhuev, Y.O. and Tsatsakis, A. (2018). Morphologic and chemical composition of particulate matter in motorcycle engine exhaust. Toxicol. Rep. 5: 224–230.
Cheruiyot, N.K., Lee, W.J., Mwangi, J.K., Wang, L.C., Lin, N.H., Lin, Y.C., Cao, J., Zhang, R. and Chang-Chien, G.P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol Air Qual. Res. 15: 2730–2762.
Chi, K.H., Hung, N.T., Lin, C.Y., Wang, S.H., Ou-Yang, C.F., Lee, C.T. and Lin, N.H. (2016). Evaluation of atmospheric PCDD/Fs at two high-altitude stations in Vietnam and Taiwan during Southeast Asia biomass burning. Aerosol Air Qual. Res. 16: 2706–2715.
Chi, K.H., Luo, S., Kao, S.J. and Lee, T.Y. (2013). Sources and deposition fluxes of PCDD/Fs in a high-mountain lake in central Taiwan. Chemosphere 91: 150–156.
Choi, J.K., Heo, J.B., Ban, S.J., Yi, S.M. and Zoh, K.D. (2012). Chemical Characteristics of PM2.5 Aerosol in Incheon, Korea. Atmos. Environ. 60: 583–592.
Chow, J. C., & Watson, J. G. (1998). Guideline on speciated particulate monitoring. Report prepared for US Environmental Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV.
Chow, J.C. and Watson, J.G. (2002). Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Model. Energy Fuels 16: 222–260.
Chow, J.C., Yang, X., Wang, X., Kohl, S.D., Hurbain, P.R., Chen, L.A. and Watson, J.G. (2015). Characterization of ambient PM10 bioaerosols in a California agricultural town. Aerosol Air Qual. Res. 15: 1433–1447.
Chuang, M.T., Chou, C.C.K., Lin, N.H., Takami, A., Hsiao, T.C., Lin, T.H., Fu, J.S., Pani, S.K., Lu, Y.R. and Yang, T.Y. (2017). A simulation study on PM2.5 sources and meteorological characteristics at the northern tip of Taiwan in the early stage of the Asian haze period. Aerosol Air Qual. Res. 17: 3166–3178.
Chuang, M.T., Fu, J.S., Jang, C.J., Chan, C.C., Ni, P.C. and Lee, C.T. (2008). Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a Southward Asian high-pressure system. Sci. Total Environ. 406: 168–179.
Chuang, M.T., Lee, C.T. and Hsu, H.C. (2018). Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method. J. Environ. Manage. 227: 10–22.
Cohen, A.J., Ross Anderson, H., Ostro, B., Pandey, K.D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A., Romieu, I. and Samet, J.M. (2005). The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health Part A 68: 1301–1307.
Dai, Q.L., Bi, X.H., Wu, J.H., Zhang, Y.F., Wang, J., Xu, H., Yao, L., Jiao, L. and Feng, Y.C. (2015). Characterization and Source Identification of Heavy Metals in Ambient PM10 and PM2.5 in an Integrated Iron and Steel Industry Zone Compared with a Background Site. Aerosol Air Qual. Res. 2015: 875–887.
de Almeida Albuquerque, T.T., de Fátima Andrade, M., Ynoue, R.Y., Moreira, D.M., Andreão, W.L., Dos Santos, F.S. and Nascimento, E.G.S. (2018). WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. Environ. Sci. Pollut. Res. Int. 25: 36555–36569.
Diaz, G.R.V. (2008). Sources of Risk to Health by Exposure to PM2.5 in Mexico City. Epidemiology 19: S223–S224.
DRI (2012). DRI Model 2001 Thermal/Optical Carbon Analysis (TOR/TOT) of Aerosol Filter Samples - Method IMPROVE_A DRI Standard Operarion Procedure.
Ebisu, K. and Bell, M.L. (2012). Airborne PM2.5 Chemical Components and Low Birth Weight in the Northeastern and Mid-Atlantic Regions of the United States. Environ. Health Perspect. 120: 1746–1752.
Eglinton, T., Eglinton, G., Dupont, L., Sholkovitz, E., Montluçon, D., & Reddy, C. (2002). Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochemistry, Geophysics, Geosystems, 3(8), 1-27.
Elangasinghe, M.A., Singhal, N., Dirks, K.N., Salmond, J.A. and Samarasinghe, S. (2014). Complex Time Series Analysis of PM10 and PM2.5 for a Coastal Site Using Artificial Neural Network Modelling and k-means Clustering. Atmos. Environ. 94: 106–116.
Eldred, R.A., Cahill, T.A. and Flocchini, R.G. (1997). Composition of PM2.5 and PM10 aerosols in the IMPROVE network. J. Air Waste Manage. Assoc. 47: 194–203.
Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.P.C., Yang, I.L. and Chen, M.H. (2003). Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Sci. Total Environ. 308: 157–166.
Fang, G.C., Chang, C.N., Wu, Y.S., Fu, P.P.C., Yang, D.G. and Chia-Chium, C. (1999). Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan. Sci. Total Environ. 234: 203–212.
Ferreira, J.E.V., Pinheiro, M.T.S., dos Santos, W.R.S. and da Silva Maia, R. (2016). Graphical representation of chemical periodicity of main elements through boxplot. Educ. Quim. 27: 209–216.
Foley, K., Roselle, S., Appel, K., Bhave, P., Pleim, J., Otte, T., Mathur, R., Sarwar, G., Young, J. and Gilliam, R. (2010). Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geosci. Model Dev. 3: 205–226.
Fu, J.S., Yeh, F.L., Jang, C.J., Chen, R.J. and Chuang, M.T. (2009). Air quality modelling: An investigation of the merits of CMAQ in the analysis of trans-boundary air pollution from continents to small islands. Int. J. Environ. Technol. Manage. 10: 150–166.
Gao, M., Guttikunda, S.K., Carmichael, G.R., Wang, Y., Liu, Z., Stanier, C.O., Saide, P.E. and Yu, M. (2015). Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci. Total Environ. 511: 553–561.
Gehrig, R. and Buchmann, B. (2003). Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos. Environ. 37: 2571–2580.
Gouveia, N. and Fletcher, T. (2000). Respiratory Diseases in Children and Outdoor Air Pollution in Sao Paulo, Brazil: A Time Series Analysis. Occup. Environ. Med. 57: 477–483.
Hanzel, V.A. and Durham, N. (2005). Peer Review of the Chemical Mass Balance Model (EPA-CMB8.2) and Documentation US Environmental Protection Agency.
Held, T., Ying, Q., Kaduwela, A. and Kleeman, M. (2004). Modeling Particulate Matter in the San Joaquin Valley with a Source-oriented Externally Mixed Three-dimensional Photochemical Grid Model. Atmos. Environ. 38: 3689–3711.
Hemann, J., Brinkman, G., Dutton, S., Hannigan, M., Milford, J. and Miller, S. (2009). Assessing Positive Matrix Factorization Model Fit: A New Method to Estimate Uncertainty and Bias in Factor Contributions at the Measurement Time Scale. Atmos. Chem. Phys. 9: 497–513.
Heo, J.B., Hopke, P.K. and Yi, S.M. (2009). Source Apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 9: 4957–4971.
Ho, K., Lee, S., Cao, J., Li, Y., Chow, J.C., Watson, J.G. and Fung, K. (2006). Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmos. Chem. Phys. 6: 4569–4576.
Hsieh, L.T. and Chen, T.C. (2010). Characteristics of ambient ammonia levels measured in three different industrial parks in Southern Taiwan. Aerosol Air Qual. Res. 10: 596–608.
Hsu, C.H. and Cheng, F.Y. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmos. Environ. 144: 397–408.
Hsu, C.Y., Chiang, H.C., Lin, S.L., Chen, M.J., Lin, T.Y. and Chen, Y.C. (2016). Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ. 541: 1139–1150.
Hsu, Y.C., Lai, M.H., Wang, W.C., Chiang, H.L. and Shieh, Z.X. (2008). Characteristics of Water-Soluble Ionic Species in Fine (PM2.5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. J. Air Waste Manage. Assoc. 58: 1579–1589.
Huang, P., Zhang, J., Tang, Y. and Liu, L. (2015). Spatial and temporal distribution of PM2.5 pollution in Xi’an City, China. Int. J. Environ. Res. Public Health 12: 6608–6625.
Hung, L.J., Chan, T.F., Wu, C.H., Chiu, H.F. and Yang, C.Y. (2012). Traffic Air Pollution and Risk of Death from Ovarian Cancer in Taiwan: Fine Particulate Matter (PM2.5) as a Proxy Marker. J. Toxicol. Environ. Health Part A 75: 174–182.
Hwa, M.Y., Hsieh, C.C., Wu, T.C. and Chang, L.F.W. (2002). Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmos. Environ. 36: 1993–2002.
Hwang, S.L., Guo, S.E., Chi, M.C., Chou, C.T., Lin, Y.C., Lin, C.M. and Chou, Y.L. (2016). Association between atmospheric fine particulate matter and hospital admissions for chronic obstructive pulmonary disease in southwestern Taiwan: A population-based study. Int. J. Environ. Res. Public Health13: 366.
Jaeckels, J.M., Bae, M.S. and Schauer, J.J. (2007). Positive Matrix Factorization (PMF) Analysis of Molecular Marker Measurements to Quantify the Sources of Organic Aerosols. Environ. Sci. Technol. 41: 5763–5769.
Janssen, N., Hoek, G., Simic-Lawson, M., Fischer, P., Van Bree, L., Ten Brink, H., Keuken, M., Atkinson, R.W., Anderson, H.R. and Brunekreef, B. (2011). Black Carbon as an Additional Indicator of the Adverse health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 119: 1691–1699.
Jihua, T., Jingchun, D., Kebin, H., Yongliang, M., Fengkui, D., Yuan, C. and Jiamo, F. (2009). Chemical Characteristics of PM2.5 during a typical Haze Episode in Guangzhou. J. Environ. Sci. 21: 774–781.
Jiménez, P., Parra, R. and Baldasano, J.M. (2007). Influence of initial and boundary conditions for ozone modeling in very complex terrains: A case study in the northeastern Iberian Peninsula. Environ. Modell. Software 22: 1294–1306.
Jiménez-Guerrero, P., Pérez, C., Jorba, O. and Baldasano, J.M. (2008). Contribution of Saharan dust in an integrated air quality system and its on‐line assessment. Geophys. Res. Lett. 35: L03814.
John, W., Wall, S. M., Ondo, J. L., & Winklmayr, W. (1990). Modes in the size distributions of atmospheric inorganic aerosol. Atmos Environ A-Gen, 24(9), 2349-2359.
Karamchandani, P., Vijayaraghavan, K., Chen, S.Y., Seigneur, C. and Edgerton, E.S. (2006). Plume-in-grid Modeling for Particulate Matter. Atmos. Environ. 40: 7280–7297.
Karanasiou, A., Moreno, T., Amato, F., Lumbreras, J., Narros, A., Borge, R., Tobías, A., Boldo, E., Linares, C. and Pey, J. (2011). Road dust contribution to PM levels – Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization. Atmos. Environ. 45: 2193–2201.
Kim, Y.P. and Lee, G. (2018). Trend of air quality in Seoul: Policy and science. Aerosol Air Qual. Res. 18: 2141–2156.
Kong, S., Ji, Y., Lu, B., Zhao, X., Han, B. and Bai, Z. (2014). Similarities and differences in PM2.5, PM10 and TSP chemical profiles of fugitive dust sources in a coastal oilfield city in China. Aerosol Air Qual. Res. 14: 2017–2028.
Lang, J., Cheng, S., Wen, W., Liu, C. and Wang, G. (2017). Development and application of a new PM2.5 source apportionment approach. Aerosol Air Qual. Res. 17: 340–350.
Lang, J.L., Cheng, S.Y., Li, J.B., Chen, D.S., Zhou, Y., Wei, X., Han, L.H. and Wang, H.Y. (2013). A monitoring and modeling study to investigate regional transport and characteristics of PM2.5 pollution. Aerosol Air Qual. Res. 13: 943–956.
Lee, K.L., Lee, W.J., Mwangi, J.K., Wang, L.C., Gao, X. and Chang-Chien, G.P. (2016). Atmospheric PM2.5 and depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans in Kaohsiung Area, southern Taiwan. Aerosol Air Qual. Res. 16: 1775–1791.
Lewis, C.W., Norris, G.A., Conner, T.L. and Henry, R.C. (2003). Source Apportionment of Phoenix PM2.5 Aerosol with the Unmix Receptor Model. J. Air Waste Manage. Assoc. 53: 325–338.
Li, B. and Hou, L. (2015). Discuss on satellite-based particulate matter monitoring technique. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-7/W3: 219–223.
Li, J.J., Wang, G.H., Wang, X.M., Cao, J.J., Sun, T., Cheng, C.L., Meng, J.J., Hu, T.F. and Liu, S.X. (2013). Abundance, Composition and Source of Atmospheric PM2.5 at a Remote Site in the Tibetan Plateau, China. Tellus Ser. B 65: 20281.
Li, M., Zhang, Q., Kurokawa, J.I., Woo, J.H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H. and Zheng, B. (2017). MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17: 935–963.
Li, T.C., Yuan, C.S., Huang, H.C., Lee, C.L., Wu, S.P. and Tong, C. (2016). Inter-comparison of seasonal variation, chemical characteristics, and source identification of atmospheric fine particles on both sides of the Taiwan Strait. Sci. Rep. 6: 22956.
Li, X.Y., Yu, X.B., Liang, W.W., Yu, N., Wang, L., Ye, X.J., Chen, K. and Bian, P.D. (2012). Meta-analysis of association between particulate matter and stroke attack. CNS Neurosci. Ther. 18: 501–508.
Liao, H.T., Chou, C.C.K., Chow, J.C., Watson, J.G., Hopke, P.K. and Wu, C.F. (2015). Source and Risk Apportionment of selected VOCs and PM2.5 Species Using Partially Constrained Receptor Models with Multiple Time Resolution Data. Environ. Pollut. 205: 121–130.
Lin, C.H. and Wu, Y.L. (2003). Semi-statistical model for evaluating the effects of source emissions and meteorological effects on daily average NOx concentrations in South Taiwan. Atmos. Environ. 37: 2051–2059.
Lin, G.Y., Lee, G.R., Lin, S.F., Hung, Y.H., Li, S.W., Wu, G.J., Ye, H., Huang, W. and Tsai, C.J. (2015). Ultrafine Particles and PM2.5 at Three Urban Air Monitoring Stations in Northern Taiwan from 2011 to 2013. Aerosol Air Qual. Res. 15: 2305–2319.
Lin, M.D. and Lin, Y.C. (2002). The application of GIS to air quality analysis in Taichung City, Taiwan, ROC. Environ. Modell. Software 17: 11–19.
Lin, Y.C., Cheng, M.T., Ting, W.Y. and Yeh, C.R. (2006). Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmos. Environ.i 40: 4725–4733.
Lu, H.Y., Lin, S.L., Mwangi, J.K., Wang, L.C. and Lin, H.Y. (2016). Characteristics and Source Apportionment of Atmospheric PM2.5 at a Coastal City in Southern Taiwan. Aerosol Air Qual. Res. 16: 1022–1034.
Lu, H.Y., Mwangi, J.K., Wang, L.C., Wu, Y.L., Tseng, C.Y. and Chang, K.H. (2016). Atmospheric PM2.5 characteristics and long-term trends in Tainan city, Southern Taiwan. Aerosol Air Qual. Res. 16: 2488–2511.
Lu, H.Y., Wu, Y.L., J Mutuku J.K., Chang K.H., (2019). Various Sources of PM2.5 and their Impact on the Air Quality in Tainan City, Taiwan. Aerosol Air Qual. Res. 19: 601–619.
Lv, B., Liu, Y., Yu, P., Zhang, B. and Bai, Y. (2015). Characterizations of PM2.5 Pollution Pathways and Sources Analysis in Four Large Cities in China. Aerosol Air Qual. Res. 15: 1836–1843.
Ma, Z., Hu, X., Sayer, A.M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L. and Liu, Y. (2015). Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 124: 184–192.
Mao, Q., Gautney, L.L., Cook, T.M., Jacobs, M.E., Smith, S.N. and Kelsoe, J.J. (2006). Numerical Experiments on MM5-CMAQ Sensitivity to Various PBL Schemes. Atmos. Environ. 40: 3092–3110.
Marcazzan, G.M., Ceriani, M., Valli, G. and Vecchi, R. (2003). Source Apportionment of PM10 and PM2.5 in Milan (Italy) Using Receptor Modelling. Sci. Total Environ. 317: 137–147.
Marcazzan, G.M., Vaccaro, S., Valli, G. and Vecchi, R. (2001). Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 35: 4639–4650.
Martins, L.D., Hallak, R., Alves, R.C., de Almeida, D.S., Squizzato, R., Moreira, C.A., Beal, A., da Silva, I., Rudke, A. and Martins, J.A. (2018). Long-range transport of aerosols from biomass burning over southeastern South America and their implications on air quality. Aerosol Air Qual. Res. 18: 1734–1745.
Matawle, J., Pervez, S., Dewangan, S., Tiwari, S., Bisht, D.S. and Pervez, Y.F. (2014). PM2.5 Chemical Source Profiles of Emissions Resulting from Industrial and Domestic Burning Activities in India. Aerosol Air Qual. Res. 14: 2051–2066.
Maykut, N.N., Lewtas, J., Kim, E. and Larson, T.V. (2003). Source Apportionment of PM2.5 at an Urban IMPROVE Site in Seattle, Washington. Environ. Sci. Technol. 37: 5135–5142.
Mebust, M.R., Eder, B.K., Binkowski, F.S. and Roselle, S.J. (2003). Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 2. Model evaluation. J. Geophys. Res. 108: 4184.
NARSTO. (2003). Particulate matter science for policy makers: a NARSTO assessment: NARSTO Management Coordination Office.
Niyobuhungiro, R.V. and von Blottnitz, H. (2013). Investigation of arsenic airborne in particulate matter around caterers' wood fires in the Cape Town Region. Aerosol Air Qual. Res. 13: 219–224.
Nopmongcol, U., Koo, B., Tai, E., Jung, J., Piyachaturawat, P., Emery, C., Yarwood, G., Pirovano, G., Mitsakou, C. and Kallos, G. (2012). Modeling Europe with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII). Atmos. Environ. 53: 177–185.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., de la Rosa, J.D., Mantilla, E., Sanchez de la Campa, A., Querol, X., Pey, J., Amato, F. and Moreno, T. (2011). Source Apportionment of PM10 and PM2.5 at Multiple Sites in the Strait of Gibraltar by PMF: Impact of Shipping Emissions. Environ. Sci. Pollut. Res. 18: 260–269.
Pant, P. and Harrison, R.M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 77: 78–97.
Parkhurst, W.J., Tanner, R.L., Weatherford, F.P., Valente, R.J. and Meagher, J.F. (1999). Historic PM2.5/PM10 concentrations in the southeastern United States—Potential implications of the revised particulate matter standard. J. Air Waste Manage. Assoc. 49: 1060–1067.
Pekney, N.J., Davidson, C.I., Zhou, L. and Hopke, P.K. (2006). Application of PSCF and CPF to PMF-modeled Sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 40: 952–961.
Pereira, G., Belanger, K., Ebisu, K. and Bell, M.L. (2013). Fine Particulate Matter and Risk of Preterm Birth in Connecticut in 2000–2006: A Longitudinal Study. Am J Epidemiol. 179: 67–74.
Pereira, G., Bell, M.L., Belanger, K. and de Klerk, N. (2014). Fine Particulate Matter and Risk of Preterm Birth and Pre-labor Rupture of Membranes in Perth, Western Australia 1997–2007: A Longitudinal Study. Environ. Int. 73: 143–149.
Pilinis, C. S., John H. (1987). Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmos Environ, 21(11), 2453-2466.
Pope, C.A. (1996). Adverse health effects of air pollutants in a nonsmoking population. Toxicology 111: 149–155.
Pope, C.A., Dockery, D.W. and Schwartz, J. (1995). Review of Epidemiological Evidence of Health-effects of Particulate Air-pollution. Inhalation Toxicol. 7: 1–18.
Provençal, S., Buchard, V., da Silva, A.M., Leduc, R., Barrette, N., Elhacham, E. and Wang, S.H. (2017). Evaluation of PM2.5 surface concentration simulated by Version 1 of the NASA's MERRA Aerosol Reanalysis over Israel and Taiwan. Aerosol Air Qual. Res. 17: 253–261.
Punger, E.M. and West, J.J. (2013). The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the United States. Air Qual. Atmos. Health 6: 563–573.
Qin, M., Wang, X., Hu, Y., Ding, X., Song, Y., Li, M., Vasilakos, P., Nenes, A. and Russell, A.G. (2018). Simulating biogenic secondary organic aerosol during summertime in China. J. Geophys. Res. 123: 11100–111119.
Queen, A. and Zhang, Y. (2008). Examining the Sensitivity of MM5-CMAQ Predictions to Explicit Microphysics Schemes and Horizontal Grid Resolutions, Part III - The Impact of Horizontal Grid Resolution. Atmos. Environ. 42: 3869–3881.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massague, G. and Puig, O. (2001). PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35: 6407–6419.
Rosenthal, F.S., Carney, J.P. and Olinger, M.L. (2008). Increased Risk of Out-of-Hospital Cardiac Arrest is Associated with Short-Term PM2.5 Exposure. Epidemiology 19: S91–S91.
Saldarriaga-Norena, H., Hernandez-Mena, L., Ramirez-Muniz, M., Carbajal-Romero, P., Cosio-Ramirez, R. and Esquivel-Hernandez, B. (2009). Characterization of Trace Metals of Risk to Human Health in Airborne Particulate Matter (PM2.5) at Two Sites in Guadalajara, Mexico. J. Environ. Monit.. 11: 887–894.
Samaali, M., Moran, M.D., Bouchet, V.S., Pavlovic, R., Cousineau, S. and Sassi, M. (2009). On the influence of chemical initial and boundary conditions on annual regional air quality model simulations for North America. Atmos. Environ. 43: 4873–4885.
San José, R., Pérez, J. and González, R. (2003). A tool to evaluate the air quality impact of industrial plants by using MM5-CMAQ. In Air pollution processes in regional scale, Springer Netherlands, Dordrecht, pp. 257–264.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ, 30(22), 3837-3855.
Sekiguchi, A., Shimadera, H. and Kondo, A. (2018). Impact of aerosol direct effect on wintertime PM2.5 simulated by an online coupled meteorology-air quality model over East Asia. Aerosol Air Qual. Res. 18: 1068–1079.
Seneviratne, S., Handagiripathira, L., Sanjeevani, S., Madusha, D., Waduge, V.A.A., Attanayake, T., Bandara, D. and Hopke, P.K. (2017). Identification of sources of fine particulate matter in Kandy, Sri Lanka. Aerosol Air Qual. Res. 17: 476–484.
Shih, T.S., Shih, M., Lee, W.J., Huang, S.L., Wang, L.C., Chen, Y.C. and Tsai, P.J. (2009). Particle size distributions and health-related exposures of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of sinter plant workers. Chemosphere 74: 1463–1470.
Shimadera, H., Kondo, A., Kaga, A., Shrestha, K. L., and Inoue, Y., (2009),“Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan”, Atmospheric Environment, Vol.43, pp. 5894-5907.
Silva, F.S., Cristale, J., Andre, P.A., Saldiva, P.H.N. and Marchi, M.R.R. (2010). PM2.5 and PM10: The Influence of Sugarcane Burning on Potential Cancer Risk. Atmos. Environ. 44: 5133–5138.
Smyth, S.C., Jiang, W., Roth, H., Moran, M.D., Makar, P.A., Yang, F., Bouchet, V.S. and Landry, H. (2009). A Comparative Performance Evaluation of the AURAMS and CMAQ Air-quality Modelling Systems. Atmos. Environ. 43: 1059–1070.
Sofowote, U.M., Su, Y., Dabek-Zlotorzynska, E., Rastogi, A.K., Brook, J. and Hopke, P.K. (2015). Sources and Temporal Variations of Constrained PMF Factors Obtained from Multiple-year Receptor Modeling of Ambient PM2.5 Data from Five Speciation Sites in Ontario, Canada. Atmos. Environ. 108: 140–150.
Souza, D.Z., Vasconcellos, P.C., Lee, H., Aurela, M., Saarnio, K., Teinilä, K. and Hillamo, R. (2014). Composition of PM2.5 and PM10 Collected at Urban Sites in Brazil. Aerosol Air Qual. Res. 14: 168–176.
Stelson, A., & Seinfeld, J. (1982). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos Environ, 16(5), 983-992.
TEDS8.1 (2010). Taiwan Emission Data System. EPA, Taiwan. http://teds.epa.gov.tw/.
TEDS9.0 (2013). Taiwan Emission Data System. EPA, Taiwan. http://teds.epa.gov.tw/.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K. and Samara, C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmos. Environ. 44: 2231–2239.
Tillett, T. (2012). Hearts over Time Cardiovascular Mortality Risk Linked to Long-Term PM2.5 Exposure. Environ. Health Perspect. 120: A205–A205.
Tsai, H.H., Yuan, C.S., Hung, C.H. and Lin, C. (2011). Physicochemical properties of PM2.5 and PM2.5–10 at Inland and offshore sites over Southeastern Coastal Region of Taiwan Strait. Aerosol Air Qual. Res. 11: 664–678.
Tsai, Y.I. and Cheng, M.T. (1999). Visibility and Aerosol Chemical Compositions near the Coastal Area in Central Taiwan. Sci. Total Environ. 231: 37–51.
Vecchi, R., Chiari, M., D'Alessandro, A., Fermo, P., Lucarelli, F., Mazzei, F., Nava, S., Piazzalunga, A., Prati, P., Silvani, F. and Valli, G. (2008). A Mass Closure and PMF Source Apportionment Study on the Sub-micron Sized Aerosol Fraction at Urban Sites in Italy. Atmos. Environ. 42: 2240–2253.
Wang, F., Lin, T., Li, Y., Ji, T., Ma, C. and Guo, Z. (2014). Sources of Polycyclic Aromatic Hydrocarbons in PM2.5 over the East China Sea, a Downwind Domain of East Asian Continental Outflow. Atmos. Environ. 92: 484–492.
Wang, H., Tian, M., Li, X., Chang, Q., Cao, J., Yang, F., Ma, Y. and He, K. (2015). Chemical Composition and Light Extinction Contribution of PM2.5 in Urban Beijing for a 1-Year Period. Aerosol Air Qual. Res. 15: 2200–2211.
Wang, K., Zhang, Y., Jang, C., Phillips, S. and Wang, B. (2009). Modeling Intercontinental Air Pollution Transport over the Trans-Pacific Region in 2001 Using the Community Multiscale Air Quality Modeling System. J. Geophys. Res. 114: D04307.
Wang, P., Cao, J., Tie, X., Wang, G., Li, G., Hu, T., Wu, Y., Xu, Y., Xu, G. and Zhao, Y. (2015). Impact of meteorological parameters and gaseous pollutants on PM2.5 and PM10 mass concentrations during 2010 in Xi’an, China. Aerosol Air Qual. Res. 15: 1844–1854.
Wang, W., Cui, K., Zhao, R., Zhu, J., Huang, Q. and Lee, W.J. (2018). Sensitivity analysis of PM2.5-bound total PCDD/FS-TEQ content: In the case of Wuhu city, China. Aerosol Air Qual. Res. 18: 407–420.
Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R. and Ashbaugh, L.L. (1994). Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study. Aerosol Sci. Technol. 21: 1–36.
Watson, J.G., Zhu, T., Chow, J.C., Engelbrecht, J., Fujita, E.M. and Wilson, W.E. (2002). Receptor Modeling Application Framework for Particle Source Apportionment. Chemosphere. 49: 1093–1136.
Wilson, W. E., & Suh, H. H. (1997). Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. Air and Waste Management Association, 47(12), 1238-1249.
Wong, D., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A., Young, J. and Kang, D. (2012). WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results. Geosci. Model Dev. 5: 299–312.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J. and Yin, L. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 104: 264–272.
Yang, H.H., Lee, K.T., Hsieh, Y.S., Luo, S.W. and Huang, R.J. (2015). Emission Characteristics and Chemical Compositions of both Filterable and Condensable Fine Particulate from Steel Plants. Aerosol Air Qual. Res. 15: 1672–1680.
Yang, H.Y., Tseng, Y.L., Chuang, H.L., Li, T.C., Yuan, C.S. and Lee, J.J. (2017a). Chemical fingerprint and source identification of atmospheric fine particles sampled at three environments at the tip of Southern Taiwan. Aerosol Air Qual. Res. 17: 529–542.
Yang, T.T., Hsu, C.Y., Chen, Y.C., Young, L.H., Huang, C.H. and Ku, C.H. (2017b). Characteristics, sources, and health risks of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol Air Qual. Res. 17: 563–573.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K. and Ye, B. (2002). The Water-soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 36: 4223–4234.
Yen, C.H. and Horng, J.J. (2009). Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan. J. Environ. Sci. Health., Part A 44: 1424–1429.
Yin, L., Niu, Z., Chen, X., Chen, J., Xu, L. and Zhang, F. (2012). Chemical Compositions of PM2.5 Aerosol during Haze Periods in the Mountainous City of Yong'an, China. J. Environ. Sci. 24: 1225–1233.
Yu, Y., Sokhi, R.S., Kitwiroon, N., Middleton, D.R. and Fisher, B. (2008). Performance Characteristics of MM5-SMOKE-CMAQ for a Summer Photochemical Episode in Southeast England, United Kingdom. Atmos. Environ. 42: 4870–4883.
Yue, D., Zhong, L., Zhang, T., Shen, J., Zhou, Y., Zeng, L., Dong, H. and Ye, S. (2015). Pollution Properties of Water-Soluble Secondary Inorganic Ions in Atmospheric PM2.5 in the Pearl River Delta Region. Aerosol Air Qual. Res. 15: 1737–1747.
Zhang, K., Chai, F., Zheng, Z., Yang, Q., Zhong, X., Fomba, K.W. and Zhou, G. (2018). Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. J. Environ. Sci. 71: 188–196.
Zhang, M., Han, Z. and Zhu, L. (2007). Simulation of atmospheric aerosols in East Asia using modeling system RAMS-CMAQ: Model evaluation. China Particuology 5: 321–327.
Zheng, M., Cass, G.R., Schauer, J.J. and Edgerton, E.S. (2002). Source Apportionment of PM2.5 in the Southeastern United States Using Solvent-extractable Organic Compounds as Tracers. Environ. Sci. Technol. 36: 2361–2371.
Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L.M., Kiang, C.S., Zhang, Y.H. and Cass, G.R. (2005). Seasonal Trends in PM2.5 Source Contributions in Beijing, China. Atmos. Environ. 39: 3967–3976.
Zhou, D., Li, B., Huang, X., Virkkula, A., Wu, H., Zhao, Q., Zhang, J., Liu, Q., Li, L. and Li, C. (2017). The impacts of emission control and regional transport on PM2.5 ions and carbon components in Nanjing during the 2014 Nanjing Youth Olympic Games. Aerosol Air Qual. Res. 17: 730–740.
Zhou, Y., Cheng, S., Liu, L. and Chen, D. (2012). A coupled MM5-CMAQ modeling system for assessing effects of restriction measures on PM10 pollution in Olympic City of Beijing, China. J. Environ. Inf. 19: 120–127.
林佳薇,2015,台灣南部地區細懸浮微粒之特徵,碩士論文,國立成功大學,環境工程學系,臺南市。
楊智翰,2013,境外不同區域長程傳輸對臺灣空氣品質影響之模擬研究,碩士論文,國立雲林科技大學,環境與安全衛生工程系,雲林。