研究生: |
趙嘉詳 Jhao, Jia-Siang |
---|---|
論文名稱: |
耕作與輪作系統對不同深度土壤的線蟲群落的影響 The effects of tillage and rotation on soil nematode community in different depth |
指導教授: |
張松彬
Chang, Song-Bin |
學位類別: |
碩士 Master |
系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 土壤線蟲群落 、翻耕 、輪作 、深度 、墊刃亞科 |
外文關鍵詞: | Soil nematode community, Tillage, Rotation, Depth, Tylenchinae |
相關次數: | 點閱:102 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
翻耕與輪作是常見的農業管理方式,用以增加農作物的產量,改善農作物的品質。而目前已知人為的農業操作對於土壤中的線蟲群落影響甚鉅。本實驗研究翻耕(免耕、傳統翻耕) 與輪作方式(玉米-玉米連作、玉米-大豆輪作) 在不同深度中對土壤線蟲群落的影響,並以土壤線蟲作一指標生物,以顯示土壤及土壤食物網的健康程度。本實驗依食性將土壤線蟲歸類為食細菌線蟲、食真菌線蟲、雜食-捕食性線蟲、植物寄生線蟲。
實驗結果顯示,免耕提升了線蟲通道比 (NCR)、NCR (Fil)、結構指數(SI)及SI (Fil) 的數值,表示在免耕的環境中以細菌分解途徑為主,且土壤食物網結構比傳統翻耕更加穩定。輪作系統中,玉米-大豆輪作的環境中適合c-p 1 (colonizer-persister 1) 的食細菌線蟲BV1線蟲 (Mesorhabditis和Rhabditis) 及BV2線蟲 (Acrobeloides、Cephalobus和Heterocephalobus) 生活,造成相關的基本指數 (BI)及BI (Fil) 在0-5和15-30公分的土層中較高,並增加了5-15公分土層中的豐富指數 (EI)及EI (Fil)。本研究中發現土壤及線蟲群落結構在不同深度中有顯著差異,且受到土壤總體密度的影響甚鉅。
NCR與通道指數(CI)皆顯示食真菌線蟲的數量在免耕中較翻耕的處理中為低。已知土壤線蟲群落對氣候敏感,呈現出明顯的季節性變動,在中國東北部的嚴寒冬季氣溫影響下,土壤線蟲呈現出明顯的垂直分布。為躲避嚴寒及找尋合適的土壤濕度與食物資源,線蟲在免耕中聚集在15-30公分的土層,而在傳統耕作中,線蟲則向5-15公分處聚集。本研究中被獨立出的營養類群,Tylenchinae,對不同農業管理措施的反應常與食真菌線蟲一致,尤其是已被確定食性的線蟲屬,Filenchus。此結果建議,Tylenchinae應被歸為食真菌線蟲。
Tillage and rotation are routine management practices applied in agriculture to improve the quality and productivity of crop. It has long been known that agricultural managements have significant impact on the soil nematode community. To investigate the effects of tillage and rotation on nematode community at different depths, a field experiment with a complete random block design was performed. The treatments were the combination of two tillage systems: no-till (NT) and conventional tillage (CT); and two crop rotations: maize-maize continuous cropping (MM) and maize-soybean rotation (MS). We used soil nematodes as bioindicator to assess the healthiness of soil. Nematodes were categorized into appropriate functional guilds, including bacterivores, fungivores, omnivore-predator, and plant-parasite. Nematode ecological indices were used to analyze the trend of soil nematode community.
The results showed that the nematode channel ratio (NCR), NCR (Fil), structure index (SI) and SI (Fil) was higher in NT, which indicated that NT was dominated by bacterial decomposition pathway, and the soil food web suffered less disturbance in NT than in CT. MS was suitable for bacterivore of colonizer-persister class 1 (BV1): Mesorhabditis and Rhabditis, and BV2: Acrobeloides, Cephalobus and Heterocephalobus, leading to higher basal index (BI) and BI (Fil) in soil depth of 0-5 and 15-30 cm, and higher enrichment index (EI) and EI (Fil) in 5-15 cm deep. Furthermore, data showed a significant difference between depths, and bulk density played a key role in this study.
Both of NCR and channel index (CI) indicated that the abundance of fungivores was lower in NT. There was a significant seasonal variation in soil nematodes community. The fatal winter in Northeast China brought about the significant vertical distribution of soil nematodes. Nematodes aggregated at 15-30 cm under NT, and at 5-15 cm under CT to find adequate temperature, soil moisture and food resources. Therefore, most of the soil nematode characteristics were impacted by depth and bulk density. Tylenchinae performed as fungivores in this study, especially the genus, Filenchus, and we suggested that Tylenchinae was better to be identified as fungivorous nematode.
Bakonyi, G., Nagy, P., Kovács-Láng, E., Kovács, E., Barabás, S., Répási, V., and Seres, A. (2007). Soil nematode ommunity structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 37, 31-40.
Bardgett, R. D. (2005). The biology of soil: a community and ecosystem approach.
Oxford; New York: Oxford University Press.
Bardgett, R. D., and Cook, R. (1998). Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, 10, 263-276.
Berklian, Y. U. (2008). Crop rotation. New York: Nova Science Publishers.
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
Bongers, T., and Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251.
Bongers, T., and Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6), 224-228.
Briar, S. S., Miller, S. A., Stinner, D., Kleinhenz, M. D., and Grewal, P. S. (2011). Effects of organic transition strategies for peri-urban vegetable production on soil properties, nematode community, and tomato yield. Applied Soil Ecology, 47, 84-91.
Burnell, A. M., Houthoofd, K., O’Hanlon, K., and Vanfleteren, J. R. (2005). Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Experimental Gerontology, 40, 850-856.
Burton, L. D. (2010). Agriscience: fundamentals and applications. Australia; Clifton
Park, New York: Delmar Cengage Learning. Ceballos, A. I. O., Rivera, J. R. A., Arce, M. M. O., and Valdivia, C. P. (2012). Velvet Bean (Mucuna pruriensvar. utilis) a Cover Crop as Bioherbicide to Preserve the Environmental Services of Soil. Herbicides – Environmental Impact Studies and Management Approaches. Dr. Ruben Alvarez-Fernandez (Ed.),
ISBN: 978-953-307-892-2, InTech, DOI: 10.5772/31833. Available from: http://www.intechopen.com/books/herbicides-environmental-impact-studies-and-management-approaches/velvetbean-biological-herbicide-to-conserve-soil-environmental-services
Coleman, D. C., Crossley, D. A., Jr., and Hendrix, P. F. (2004). Fundamentals of soil ecology (2nd edition). Amsterdam; Boston: Elsevier Academic Press.
Connor, D. J., Loomis, R. S., and Cassman, K. G. (2011). Crop ecology: productivity and management in agricultural systems. Cambridge; New York: Cambridge University Press.
Coyne, M. S., and Thompson, J. A. (2006). Fundamental soil science. Australia; United States: Thomson Delmar Learning.
Curtis, T. P., and Sloan, W. T. (2005). Exploring microbial diversity-A vast below. Science, 309, 1331-1333.
De Baets, S., Poesen, J., Meersmans, J., and Serlet, L. (2011). Cover crops and their erosion-reducing effects during concentratedflow erosion. Catena, 85, 237-244.
De Ruiter, P. C., Moore, J. C., Zwart, K. B., Bouwman, L. A., Hassink, J., Bloem, J., De Vos, J. A., Marinissen, J. C. Y., Didden, W. A. M., Lebrink, G., and Brussaard, L. (1993). Simulation of nitrogen mineralization in the below- ground food webs of two winter wheat fields. Journal of Applied Ecology, 30(1), 95-106.
De Vries, F. T., Hoffland, E., Van Eekeren, N., Brussaard, L., and Bloem, J. (2006). Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology & Biochemistry, 38, 2092-2103.
Deubel, A., Hofmann, B., and Orzessek, D. (2011). Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil & Tillage Research, 117, 85-92.
Dogliotti, S., Rossing, W. A. H., van Ittersum, M. K. (2004). Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay. Agricultural Systems, 80, 277-302.
El Titi, A. (2003). Soil tillage in agroecosystems. Boca Raton; New York; Washington, D.C.; Unite state; London, England: CRC Press.
Ettema, C. H. (1998). Soil nematode diversity: species coexistence and ecosystem function. Journal of Nematology, 30(2), 159-169.
Ferris, H., Bongers, T., and De Goede, R. G. M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
Foth, H. D. (1990). Fundamentals of soil science (8th eddition). New York: Wiley. Gliessman, S. R. (2001). Agroecosystem sustainability: developing practical
strategies. Boca Raton, Florida: CRC Press.
Gliessman, S. R. (2007). Agroecology: the ecology of sustainable food systems. Boca Raton: CRC Press.
Gomes, G. S., Huang, S. P., and Cares, J. E. (2003). Nematode community, trophic structure and population fluctuation in soybean fields. Fitopatologia Brasileira, 28(3), 258-266.
González-chávez, M. C., Aitkenhead-Peterson, J. A., Gentry, T. J., Zuberer, D., Hons, F., and Loeppert, R. (2010). Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil & Tillage Research, 106, 285-293.
Govaerts, B., Fuentes, M., Mezzalama, M., Nicol, J. M., Deckers, J., Etchevers, J. D., Figueroa-Sandoval, B., and Sayre, K. D. (2007). Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil & Tillage Research, 94, 209-219.
Griffiths, B. S., Daniell, T. J., Donn, S., and Neilson, R. (2012). Bioindication potential of using molecular characterisation of the nematode community: Response to soil tillage. European Journal of Soil Biology, 49, 92-97.
Havlicek, E. (2012). Soil biodiversity and bioindication: From complex thinking to simple acting. European Journal of Soil Biology, 49, 80-84.
Hernanz, J. L., López, R., Navarrete, L., and Sánchez-Girón, V. (2002). Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil & Tillage Research, 66, 129-141.
Jiang, C., Sun, B., Li, H. X., and Jiang, Y. J. (2013). Determinants for seasonal change of nematode community composition under long-term application of organic manure in an acid soil in subtropical China. European Journal of Soil Biology, 55, 91-99.
Jiang, D. M., Li, Q., Liu, F. M., Jiang, Y., and Liang, W. J. (2007). Vertical distribution of soil nematodes in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, Northeast China. Ecological Research, 22, 49-56.
Jiang, Y. J., Sun, B., Jin, C., and Wang, F. (2013). Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology & Biochemistry, 60, 1-9.
Klass, J. R., Peters, D. P. C., Trojan, J. M., and Thomas, S. H. (2012). Nematodes as an indicator of plant–soil interactions associated with desertification. Applied Soil Ecology, 58, 66-77.
Korthals, G. W., Alexiev, A. D., Lexmond, T. M., Kammenga, J. E., and Bongers, T. (1996). Long-term effects of copper and pH on the nematode community in an agroecosystem. Environmental Toxicology and Chemistry, 15(6), 979-985.
Lampurlanés, J., Angás, P., Cantero-Martínez, C. (2001). Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Research, 69, 27-40.
Lehman, P. S. (1994). Dissemination of phytoparasitic nematodes. Nematology Circular N° 208. Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA.
Lenz, R., and Eisenbeis, G. (2000). Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biology and Fertility of Soils, 31, 237-244.
Levi, T., Sherman, C., Pen-Mouratov, S., and Steinberger, Y. (2012). Changes in soil free-living nematode communities and their trophic composition along a climatic gradient. Open Journal of Ecology, 2(2), 79-89.
Li, Q., Jiang, Y., Liang, W. J., Lou, Y. L., Zhang, E. P., and Liang, C. H. (2010). Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 46, 111-118.
Liang, W. J., Lou, Y. L., Li, Q., Zhong, S., Zhang, X. K., and Wang, J. K. (2009). Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology & Biochemistry, 41, 883-890.
Logsdon, S. D. (2013). Depth dependence of chisel plow tillage erosion. Soil & Tillage Research, 128, 119-124.
López-Fando, C., and Pardo, M. T. (2011). Soil carbon storage and stratification under different tillage systems in a semi-arid region. Soil & Tillage Research, 111, 224-230.
MacGuidwin, A. E. (1989). Abundance and vertical distribution of Longidorus breviannulatus associated with corn and potato. Journal of Nematology, 21(3), 404-408.
McSorley, R., and Dickson, D. W. (1990). Vertical distribution of plant-parasitic nematodes in sandy soil under soybean. Journal of Nematology, 22, 90-96.
Meng, F. X., Ou, W., Li, Q., Jiang, Y., and Wen, D. Z. (2006). Vertical distribution and seasonal fluctuation of nematode trophic groups as a affected by land use. Pedosphere, 16(2), 169-176.
Moreno, F., Murillo, J. M., Pelegrín, F., and Girón, I. F. (2006). Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil & Tillage Research, 85, 86-93.
Nielsen, U. N., Wall, D. H., Li, G., Toro, M., Adams, B. J., and Virginia, R. A. (2011). Nematode communities of Byers Peninsula, Livingston Island, maritime Antarctica. Antarctic Science, 23, 349-357.
Okada, H., and Harada, H. (2007). Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology, 35, 582-598.
Okada, H., and Kadota, I. (2003). Host status of 10 fungal isolates for two nematode species, Filenchus misellus and Aphelenchus avenae. Soil Biology & Biochemistry, 35, 1601-1607.
Okada, H., Harada, H., and Kadota, I. (2005). Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biology & Biochemistry, 37, 1113-1120.
Ou, W., Liang, W. J., Jiang, Y., Li, Q., and Wen, D. Z. (2005). Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49, 139-148.
Pan, F. J., McLaughlin, N. B., Yu, Q., Xue, A. G., Xu, Y. L., Han, X. Z., Li, C. J., and Zhao, D. (2010). Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean–wheat–corn rotation. European Journal of Soil Biology, 46, 105-111.
Park, B. Y., Lee, J. K., Ro, H. M., and Kim, Y. H. (2011). Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Applied Soil Ecology, 51, 17-24.
Parmelee, R. W., and Alston, D. G. (1986). Nematode trophic structure in conventional and no-tillage agroecosystems. Journal of Nematology, 18(3), 403-407.
Pen-Mouratov, S., Ginzburg, O., Whitford, W. G., and Steinberger, Y. (2012). Forest fire modifies soil free-living nematode communities in the Biriya woodland of Northern Israel. Zoological Studies, 51(7), 15 pp.
Pen-Mouratov, S., Shukurov, N., Plakht, J., and Steinberger, Y. (2008). Soil microbial activity and free-living nematode community in the upper soil layer of the anticline erosional cirque, Makhtesh Ramon, Israel. European Journal of Soil Biology, 44, 71-79.
Pérès, G., Vandenbulcke, F., Guernion, M., Hedde, M., Beguiristain, T., Douay, F., Houot, S., Piron, D., Richard, A., Bispo, A., Grand, C., Galsomies, L., Cluzeau, D. (2011). Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France). Pedobiologia, 54(Suppl.), S77-S87.
Plaster, E. J. (2009). Soil science & management (5th eddition). Australia; Clifton Park, New York: Delmar Cengage Learning.
Postma-Blaauw, M. B., De Goede, R. G. M., Bloem, J., Faber, J. H., and Brussaard, L. (2012). Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Applied Soil Ecology, 57, 39-49.
Prot, J. C. (1980). Migration of plant-parasitic nematodes towards plant roots. Revue Nematology, 3(2), 305-318.
Rahman, L., Chan, K. Y., and Heenan, D. P. (2007). Impact of tillage, stubble management and crop rotation on nematode populations in a long-term field experiment. Soil & Tillage Research, 95, 110-119.
Räty, M., and Huhta, V. (2003). Earthworms and pH affect communities of nematodes
and enchytraeids in forest soil. Biology and Fertility of Soils, 38, 52-58.
Richards, B. N. (1987). The microbiology of terrestrial ecosystems. Harlow, Essex, England: Longman Scientific & Technical; New York: Wiley.
Robertson, G. P., and Freckman, D. W. (1995). The spatial distribution of nematode trophic groups across a cultivated ecosystem. Ecology, 76(5), 1425-1432.
Roger-Estrade, J., Anger, C., Bertrand, M., and Richard, G. (2010). Tillage and soil ecology: Partners for sustainable agriculture. Soil & Tillage Research, 111, 33-40.
Salminen, J., Hernesmaa, A., Karjalainen, H., Fritze, H., and Romantschuk, M. (2010). Activity of nematodes and enchytraeids, bacterial community composition, and functional redundancy in coniferous forest soil. Biology and Fertility of Soils, 46, 113-126.
Sánchez-Moreno, S., and Smukler, S. (2008). Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm. Biology and Fertility of Soils, 44, 727-744.
Sheaffer, C. C., and Moncada, K. M. (2009). Introduction to agronomy: food, crops, and environment. Australia; Clfton Park, NY: Delmar Cengage Learning.
Snyder, D. W., Opperman, C. H., and Bird, D. M. A method for generating Meloidogyne incognita males. Journal of Nematology, 38(2), 192–194.
Sombrero, A., and De Benito, A. (2010). Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil & Tillage Research, 107, 64-70.
Steel, H., Buchan, D., de Neve, S., Couvreur, M., Moens, T., and Bert, W. (2013). Nematode and microbial communities in a rapidly changing compost environment: How nematode assemblages reflect composting phases. European Journal of Soil Biology, 56, 1-10.
Susurluk, I. A. (2009). Seasonal and vertical distribution of the entomopathogenic nematodes Heterorhabditis bacteriophora (TUR-H2) and Steinernema feltiae (TUR-S3) in turf and fallow areas. Nematology, 11(3), 321-327.
Tan, K. H. (1994). Environmental soil science. New York: Marcel Dekker. Treonis, A. M., Austin, E. E., Buyer, J. S., Maul, J. E., Spicer, L., and Zasada, I. A.
(2010). Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology, 46, 103-110.
Van Capelle, C., Schrader, S., and Brunotte, J. (2012). Tillage-induced changes in the functional diversity of soil biotaeA review with a focus on German data. European Journal of Soil Biology, 50, 165-181.
van der Wal, A., van Veen, J. A., Smant, W., Boschker, H. T. S., Bloem, J., Kardol, P., van der Putten, W. H., and De Boer, W. (2006). Fungal biomass development in a chronosequence of land abandonment. Soil Biology & Biochemistry, 38, 51-60.
Verschoor, B. C., De Goede, R. G. M., De Hoop, J. W., and De Vries, F. W. (2001). Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands. Pedobiologia, 45, 213-233.
Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K., and Bengtsson, J. (2005). Plant species effects on soil nematode communities in experimental grasslands. Applied Soil Ecology, 30, 90-103.
Wallace, H. R. (1958). I. The influence of pore size and moisture content of the soil on the migration of larvae of the beet eelworm, Heterodera schachtii Schmidt. Annals of Applied Biology, 46(1), 74-85.
Wallace, H. R. (1968). The dynamics of nematode movement. Annual Review, 6, 91-114.
Whalen, J. K. and Sampedro, L. (2010). Soil ecology and management. Oxfordshire, UK; Cambridge, MA: CABI.
Wharton, D. A., Goodall, G., and Marshall, C. J. (2003). Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. The Journal of Experimental Biology, 206, 215-221.
Whitford, W. G. (1996). The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation, 5, 185-195.
Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W., and Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25(3), 315-331.
Zhang, S. X., Li, Q., Zhang, X. P., Wei, K., Chen, L. J., and Liang, W. J. (2012). Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil & Tillage Research, 124, 196-202.
Zhang, X. K., Dong, X. W., and Liang, W. J. (2010). Spatial distribution of soil nematode communities in stable and active sand dunes of Horqin sandy land. Arid Land Research and Management, 24, 68-80.
Zhang, X. K., Li, Q., Zhu, A. N., Liang, W. J., Zhang, J. B., and Steinberger, Y. (2012). Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators, 13, 75-81.
Zhang, X. K., Liang, W. J., Jiang, D. M., Liu, Z. M., and Jiang, S. W. (2007). Soil nematode community structure in a Chinese sand dune system. Helminthologia, 44(4), 204-209.