| 研究生: |
陸瑞東 Lu, Jui-Don |
|---|---|
| 論文名稱: |
以聯氨還原製備質子交換膜燃料電池鉑
鎳/碳陰極之研究 Investigation of Pt-Ni/C prepared by hydrazine for proton exchange membrane fuel cell |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 交流阻抗分析 、白金-鎳 、質子交換膜燃料電池 |
| 外文關鍵詞: | AC impedance, Pt-Ni, PEMFC |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以氫氣為進料的質子交換膜型燃料電池中,來自陰極中白金對氧氣之還原電池的主要阻抗,為了提昇白金對於氧氣還原的能力,和減少觸媒的成本,鉑合金成為主要的研究方向之一。本研究自製不同白金和鎳組成比之Pt-Ni/C觸媒,利用放電極化曲線與交流阻抗分析,在電池放電時對陰陽兩極的電荷轉移電阻和電解質電阻進行探討。
本研究以含浸法製備觸媒,將XC-72的碳粉含浸在含有Pt和Ni鹽類之乙二醇水溶液中,以聯氨為還原劑,於超音波震盪器中在300C溫度下,製備不同白金和鎳原子比例之Pt-Ni/C觸媒。利用吸收光譜儀、能譜儀、X光繞射儀與穿透式電子顯微鏡來分析觸媒的特性。隨著鎳與白金的原子比由0增加到4,觸媒中金屬的粒徑由30~50nm降至10~30nm。鎳-白金原子比(Ni/Pt)為1之觸媒,於空氣環境中3800C下熱處理,觸媒仍可維持穩定之結構。
本研究將電池加入一個氫參考電極,使電池分為陰極、陽極和氫參考電極,以三極式的系統進行電池放電測試的分析。並且提出一個等效電路模組,模擬質子交換膜型燃料電池陰極和陽極之交流阻抗分析結果。計算出陰極之阻抗並且將與極化曲線所獲得之阻抗進行比較。
由極化曲線分析的結果發現,Pt-Ni/C觸媒對氧氣的還原比Pt/C觸媒有較好的活性,當Ni在Pt-Ni的含量為33%時有最好的活性,當Ni的含量大於50%時,電極的活性將比Pt/C觸媒差。
由陰極交流阻抗分析的結果發現,隨著Ni含量的增加,高電流(大於500mA)的阻抗分析圖譜低頻部份有一個半圓生成,Ni的添加會對反應產生質傳上的阻力,且800mA的電荷轉移電阻也隨Ni含量的增加而增加,甚至大於500mA的電荷轉移電阻。
比較極化曲線與交流阻抗分析之結果,Pt/C觸媒兩種方式分析之電荷轉移電阻較為接近,當Ni添加後分析結果將有些微差異,且交流阻抗分析之電荷轉移電阻皆大於極化曲線分析之電荷轉移電阻。
In proton exchange membrane fuel cells (PEMFC), one of the sources of major power loss is slow cathode kinetics. To increase the catalytic activity of the oxygen reduction reaction (ORR) and to lower the cost of the catalysts, various Pt-alloy catalysts has been investigated in the past two decades. In this study, various atomic ratios of platinum to nickel in the catalysts on carbon support have been studied by the discharging polarization curves and AC impedance analysis.
In this investigating, carbon powder was impregnated with platinum and nickel salts in ethylene glycol solution. Catalyst was then reduced by hydrazine. After ultrasonic in 300C, catalysts with various atomic ratios of platinum to nickel were obtained. The catalysts were characterized by X-ray Diffraction Pattern, Transmission Electron Microscope, Energy Dispersive X-ray Spectrometer and Atomic-Absorption Spectroscopy. While the ratio of nickel to platinum in the catalyst increased from 0 to 4, the particle size of metal in the catalyst was reduced from 30~50nm to 10~30nm. The structure of catalyst with Ni/Pt ratio 1 was stable after calcinations below 3800C.
Discharging test of the fuel cell was carried out in a three-electrode mode. The cell potential was divided into anode and cathode potentials, referred to a normal hydrogen reference electrode. An equivalent circuit model was proposed to explain the results of AC impedance analysis from the anode and cathode of PEMFC. The cathode performance of fuel cell was investigated by comparing the discharging polarization curves and AC impedance analysis.
As compared to the Pt/C catalysts from discharging test of the fuel cell, the Pt-Ni/C catalysts with different atomic ratios exhibited lower charge transfer resistance for Oxygen Reduction Reaction (ORR). When the catalyst with atomic nickel content in the alloy is 33%, lowest charge transfer resistance for ORR was obtained. The catalyst with nickel atomic content in the alloy higher than 50%, had high charge transfer resistance.
AC impedance analysis showed that with increasing nickel content, impedance spectra at high current had a new arc at lower frequency range. With increasing nickel contents, the impedance at 800mA would increase even higher than the impedance at 500mA.
comparing the result of AC impedance analysis and discharging test of the fuel cell, the charge transfer resistance of pure catalyst from AC impedance analysis was close to that from discharging test of the fuel cell. When nickel was added, the charge transfer resistance from AC impedance analysis was difference from that from discharging test. Charge transfer resistance of all catalysts analysed by AC impedance was higher than those analysed by discharging test.
1.黃鎮江,燃料電池,全華科技圖書出版
2.鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷第四期,161頁,(1995)
3.O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem. , vol. 22, p. 995 (1992)
4.E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells ” J. Electrochemical. Soc., vol. 135, p.2209 (1998)
5.李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷 第四期,57頁 (1997)
6.K. Scott, W.M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”, J. Power Sources, vol. 79, p. 43 (1999)
7.鄭煜騰、鄭耀宗,質子交換模型燃料電池的製造技術,能源季刊,第二十七卷 第二期,118頁(1997)
8.左峻德,台灣燃料電池產業發展策略之研究,財團法人台灣經濟研究院.
9.H. Huang, P. K. Dasgupta, Z. Genfa and J. Wang, “Pulse Amperometric Sensor for the Measurement of Atmospheric Hydrogen Peroxide”, Analytical Chem., Vol. 68 (13), p. 2026 (1996).
10.J. S. Do. and R. Y. Shieh, “Electrochemical Nitrogen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators, B37(1-2), p. 19 (1996).
11.Binod Kumar, J. P. Fellner, “Polymer-ceramic composite protonic conductors”, Journal of Power Sources, Vol. 123, p. 132 (2003).
12.K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, “Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-1400C”, Journal of The Electrochemical Society, Vol. 149 (3), p. A256 (2002).
13.Hiroyuki Uchida, Yoshihiko Ueno, Hiroki Hagihara, and Masahiro Watanabe, “Self-Humidifying Electrolyte Membranes for Fuel Cells preparation of Highly Dispersed TiO2 Particles in Nafion 112”, Journal of The Electrochemical Society, Vol. 150 (1), p. A57 (2003).
14.E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, “Methods to Advance Technology of proton Exchange Membrane Fuel Cells” J. Electrochemical. Soc., vol. 135, p2209 (1998).
15.M. S. Wilson, S. Gottesfeld, “Thin-film catalyst layers of polymer electrolyte fuel cell electrodes”, J. Appl. Electrochemistry, 22, p1 (1992).
16.S. Y. Cha and W. M. Lee, “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface”, J. Electrochemical Soc., vol. 146 (11), p4055 (1999).
17.Takako Toda, Hiroshi Igarashi, Hiroyuki Uchida, and Masahiro Watanabe, “Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co”, J. Electrochemical Soc., vol. 146 (10), p3750 (1999).
18.Landsman, D. A., F. J. Luczak, U. S. Patent, 4, 316, 944 (1982).
19.Luczak, F. J., A. D. Landsman, U. S. Patent, 4, 447, 506 (1984)
20.Luczak, F. J., A. D. Landsman, U. S. Patent, 4, 677, 092 (1987)
21.Hui Yang, Walter Vogel, Claude Lamy, and Nicol s Alonso-Vante, “Structure and Electrocatalytic Activity of Carbon-Supported Pt-Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction”, J. Phys. Chem. B., vol. 108(30), p11024 (2004).
22.U. A. Paulus, A. Wokaun, and G. G. Scherer, “Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts”, J. Phys. Chem. B., vol. 106, p4181 (2002).
23.Z. Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, “Gas Permeation In SPE Method-Ⅱ. Oxygen and Hydrogen Permeation through Nafion”, J. Electrochem. Soc., Vol. 132, p. 2601 (1985).
24.Seol-Ah Lee, Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, and Yung-Eun Sung “Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells”, Journal of The Electrochemical Society, Vol. 149(10), p.A1299 (2002).
25.M. Gotz and H. Wendt”Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochimica Acta, Vol. 43, p.3637 (1998).
26.M.J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza “Development and performance characterization of new electrocatalysts for PEMFC”, Journal of Power Sources, Vol.106, p.206 (2002).
27.Giovanni Neri, Candida Milone, Andrea Donato, Lucina Mercadante & A. Maria Visce “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol., Vol.60, p.83 (1994).
28.A. Honji, T. Mori, and Y. Hishinuma “Platinum Dispersed on Carbon Catalyst for a Fuel Cell:A Preparation with Sorbitan Monolaurate”, J. Electrochem. Soc., Vol.137, p.2084 (1990).
29.S. Wasmus, W. Vielstcich “Methanol oxidation at carbon supported Pt and Pt-Ru electrodes: an on line MS study using technical electrodes”, Journal of Applied Electrochemistry, Vol.23, p.120 (1993).
30.J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S. A. Weeks “Porous Carbon Anodes For The Direct Methanol Fuel Cell-Ⅰ. The Role Of The Reduction Method For Carbon Supported Platinum Electrodes”, Electrochimica Acta, Vol.35, p.199 (1990).
31.A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, Anovel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell”, Electrochimica Acta, Vol.48, p.255 (2002).
32.H. E. Van Dam and H. Van Bekkum “Preparation of Platium of Activated Carbon”, Journal of Catalysis, Vol.131, p.335 (1991).
33.R. Pattabiraman “Preparation of Highly Dispersed Platinum Catalysts for Methanol Fuel Cells”, Bulletin of Electrochemistry, p.352 (1993).
34.B. Kenedy, A. Smith, J. Electroanal. Chem., Vol.293, p.103 (1990).
35.D. Boxall, G. Deluga, E. Kenik, W. King, C. Lukehart, “Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance”, Chem. Mater. Vol.891, p.13 (2001).
36.E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart, “A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst”, J. Phys. Chem. B., Vol.105(34), p.8097 (2001).
37.J. Cruickshank, and K. Scott, J. Power Source, Vol.70, p.40 (1998).
38.V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, “Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells”, Journal of Applied Electrochemistry, Vol.26, p.297 (1996).
39.J. M. Song, S. Y. Cha, W. M. Lee, “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method”, J. Power Source, Vol. 94, p.78 (2001).
40.F. LUFRANO, E. PASSALACQUA, G. SQUADRITO, A. PATTI, L. GIORGI, “Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs”, Journal of Applied Electrochemistry, Vol.29, p.445 (1999).
41.Makoto Ucjida, Yuko Aoyama, Nobuo Eda, Akira Ohta, “New Preparation Method for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., vol. 142, p. 463, (1995).
42.Tae-Hyun Yang, Gu-gon Park, perumal Pugazhendi, won-Yong Lee, Chang Soo Kim, “Performance Improvement of Electrode for Polymer Electrolyte Membrane Fuel Cell”, Korean J. Chem. Eng., vol. 19 (3), p. 417 (2002).
43.Makoto Uchida, Yuko Aoyama, Nobuo Eda, and Akira Ohta, “Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrlyte Fuel Cells”, J. Electrochem. Soc., Vol. 142(12) p.4143 (1995).
44.Mahlon S. Wilson and Shimshon Gottesfeld , “High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 139 (2), p. L28 (1992).
45.Mahlon S. Wilson, Judith A. Valerio and Shimshon Gottesfeld, “Low Platinum Loading Electrodes For Polymer Electrolyte Fuel Cell Fabricated Using Thermoplastic Ionomers”, Electrochimica Acta, Vol. 40, p.355 (1995).
46.O’Hayre, Ryan; Lee, Sang-Joon; Cha, Suk-Won; Prinz, Fritz. B., ” A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading”, J. Power Source, Vol. 109, p.483 (2002).
47.M. S. Wilson, S. Gottesfeld,”Thin-Film catalyst layers for polymer electrolyte fuel cell electrodes” J. Appl. Electrochemistry, Vol. 22, p.1 (1992).
48.杜景順,“高分子電解質燃料電池陰極合金電極之製備與氧氣還原動力”,行政院國家科學委員會補助專題研究報告(1994).
49.R. Liu, W-H. Her, P. S. Fedkiw, “In Situ electrode formation on a Nafion membrane by chemical platinization”, J. Electrochem. Soc. Vol.139(1), p.15 (1992)
50.L. Giorgi, E. Antokini, A.Pozio, E. Passalacqua, “Influence of the PTFE content in the diffusion layer of low Pt loading electrodes for polymer electrolyte fuel cell”, Electrochimica Acta, Vol. 43(24), p.3675 (1998).
51.C. K. Subramaniam, N. Rajalakshmi, K. Ramya, K. S. Dhathathreyan, “High Performance Gas Diffusion Electrodes for PEMFC”, Bulletin of Electrochemistry, Vol.16 (8), p.350 (2000).
52.M. Wilson, S. Gottesfield, “High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells’, Journal of Electrochemical Society, Vol.139 (2), p.L28 (1992).
53.Makoto Uchida, Yuko Aoyama, Nobuo Eda, and Akira Ohta, “New Preparation Method for Polymer-Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 142 p.463 (1995).
54.D. BEVERS, N. WAGNER, M. VON BRADKE, “Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures”, International Journal of Hydrogen Energy, Vol.23 (1), p.57 (1998).
55.Young Tai Kho and Supramaniam Srinivasan, “Mass Tranport Phenomens in Proton Exchange Membrane Fuel Cell Using O2/He, O2/Ar and O2/N2 Mixture Theoretical Analysis”, J. Electrochem. Soc., vol. 141, p2089 (1994)
56.A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and applications”, Wiley, New York (2001).
57.John S. Newman, “Electrochemical systems”, Prentice-Hall, Inc., p.380 (1991).
58.V. Jalan nad E. J. Taylor, “Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid”, J. Electrchem. Soc., vol.130 (11), p.2299 (1983).
59.Sanjeev Mukerjee, Supramaniam Srinicasan, and Manuel P. Soriaga, “Role of Structure and Electronic Properties of Pt and Pt
Alloys on Electrocatalysis of Oxygen Reduction”, J. Electrchem. Soc., vol.142 (5), p.1409 (1995).
60.L. Xiong and A. Manthiram, “Effect of Atomic Odering on the Catalytic Activity of Carbon Supported Pt-M (M=Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs”, J. Electrchem. Soc., vol.152 (4), p.A697 (2005).
61.Myoung-ki Min, Jihoon Cho, Kyuwoong Cho, Hasuck Kim, “Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications”, Electrochimica Acta, vol.45, p.4211 (2000).
62.林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科技大學化學工程系碩士論文(2002).
63.C. M. Brett, Ana M. O. Breet, “Electrochemistry-Principles, Methods, and Applications”, Oxford, New York, p. 405 (1993).
64.S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, J. Power Source, vol. 22, p. 359, (1988).
65.薛志鴻,“質子交換模型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文(2003)
66.Epelboin, I., Gabrelli, C., Keddam, M., and Takenouti, H., “The study of passivation process by the electrode impedance analysis”, in comprehensive treatise of electrochemistry, vol. 4, plenum Press, New York, p.151, (1981).
67.Jens T. Muller, Peter M. Urban. ”Impedance studies of direct methanol fuel cell anodes” Journal of Power Sources, Vol.84, p.157 (1999).
68.Yi-Cheng Lin, Xin-Ping Qiu, Wen-Tao Zhu, Guo-Shi Wu, “impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode”, Journal of Power Sources, Vol.84, p.157 (1999).
69.Yong-Jun Leng, Xin Wang, I-Ming Hsing, “Assessment of CO-tolerance for different Pt-alloy anode catalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy”, Journal of Electroanalytical Chemistry, Vol.528, p.145 (2002).
70.R. De Levie, “On Porous Electrodes in Electrolyte Solution-Ⅳ”, Electrochim. Acta, vol. 9, p. 1231, (1964).
71.R. De Levie, “On Porous Electrodes in Electrolyte Solution”, Electrochim. Acta, vol. 8, p. 751, (1963).
72.M. Dawn Bernardi, Verbrugge Mark W., “A Mathematical Model of the Solid-polymer-Electrolyte Fuel Cell”, J. Electrchem. Soc., vol. 139, p.2477 (1992).
73.Thomas A. Zawodzinski, Jr., Charles Derouin, Susan Radzinski, Ruth J. Sherman, Van T. Smith, Thomas E. springer, Shimshon Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., vol. 140, p.1041 (1993).
74.T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”, J. Electrohem. Soc., Vol. 136, p.1594 (1989).
75.M. Eikerling, A. A. Kornyshev, “Electrochemical Impedance of the Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells”, J. Electroanal. Chem. Soc.,vol. 475, p.107, (1999).
76.吳思翰,“金屬及金屬核殼複合奈米粒子之製備”,國立成功大學化學工程系碩士論文(2004)
77.L. Xiong and A. Manthiram, “Effect of Atomic Odering on the Catalytic Activity of Carbon Supported Pt-M (M=Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs”, J. Electrchem. Soc., vol. 152 (4), pA697 (2005).
78.陳慕辰,“直接甲醇燃料電池陰陽兩極之阻抗分析”,國立成功大學化學工程系碩士論文 (2004).
79.V. A. paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer and E. R. Gonzalez, “Modelistic interpretation of the impedance reponse of a polymer electrolyte fuel cell”, Electrochimica Acta, vol.43, p.3761 (1998).
80.http://nano.nchc.org.tw/dictionary/fuel_cell.html (逢甲大學材料與工程學系)