簡易檢索 / 詳目顯示

研究生: 蔡玉婷
Tsai, Yu-Ting
論文名稱: 離子型聚月尿酯應用於發光元件之研究
The Application of Polyurethane Ionomer to Light-Emitting Device
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 離子型聚月尿酯有機發光元件
外文關鍵詞: polyurethane ionomer, PLED
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   以共軛高分子製作之發光元件由於可以製作成低驅動電壓之面、大面積顯示器,而廣受矚目。近來,於有機發光元件領域中最重要的挑戰在於:如何使載子注入達到平衡,進而提昇亮度以及電流效率值。因此,電子-電洞注入量的平衡以及有效地侷限於發光層中能大幅改善電流效率。有研究指出將離子型高分子塗佈於發光層上,組成雙層結構元件,可同時具備有以上兩種特性,而大幅提昇元件率。
      在本研究當中,將合成兩種懸掛不同的離子團之離子型聚脲酯,分別為羧酸鋰以及磺酸鈉,並作為有機發光元件之電子注入層。為了找出最適化之成膜條件以便獲得較佳的元件效能,故以不同的高分子溶液之濃度及旋轉塗佈之轉速製備高分子膜。以MEH-PPV當作元件的發光材料,測量元件ITO/PEDOT/MEH-PPV/Al, ITO/PEDOT/ MEH-PPV/PUI/ Al 以及 ITO/PEDOT/MEH-PPV/SPU/Al之電流-電壓-亮度特性曲線,並探討改變塗佈條件對元件電壓-電流-亮度特性之影響。由實驗結果發現,元件ITO/PEDOT/MEH-PPV/ionomer/Al效能有大幅的提昇情形發生,主要原因為ionomer能夠有效地幫助電子注入以及阻擋電洞。且電流效率也比單純MEH-PPV元件增加了30倍左右。最後,為了確定我們的材料應用於PLED上的穩定性,我們作了壽命測試的究。從研究結果當中,我們發現利用PUI/SPU作為修飾層之元件是穩定的且其時間-亮度特性曲線呈現和一般PLED不同的趨勢,這部分是值得我們作更進一步研究的。

      Light-emitting diodes (LEDs) based on conjugated polymer have attracted much attention because of their potential applicability to plat, large area displays which can be operated at a relatively low driving voltage. In order to enhance the light output and luminous efficiency, one of the most important challenges in the field of polymer LEDs is to obtain a balance charge injection. Thus, a balanced injection and confinement of an electron-hole pair can significantly improve luminous efficiency. It had been proposed that a new hetero-structured device which consisted of the EL polymer overlaid with the ionomer, satisfying two major criteria simultaneously.
      In the study, two kinds of polyurethane ionomer with different pendant groups, carboxyl lithium and sulfonate sodium, were synthesized and used as an electron injection layers in polymer light emitting diodes, PLED. Polymer light-emitting devices with poly[2-methoxy-5-(2’-ethyl-hexyloxy)- 1,4-phenylenevinylene](MEH-PPV) as emissive material were fabricated. To obtain optimal parameters for the PLED device performance, the polymer prepared from different concentrations of polymer solutions as well as different spin speeds. The current(I)-voltage(V)-luminance(L) characteristics of these devices, ITO/PEDOT/MEH-PPV/Al, ITO/PEDOT/MEH-PPV/PUI /Al and ITO/PEDOT/MEH-PPV/SPU/Al were measured and discussed on the effects of ionomer concentration and spin-coating speed. It is found that the performance of ITO/PEDOT/MEH-PPV/ionomer/Al devices is significantly enhanced due to the excellent electron injection and hole blocking by ionomer. The luminance efficiency is enhanced by thirty-fold compared with the corresponding single-layer MEH-PPV device. Finally, in order to check our materials using in PLED were stable, so the lifetime were studied. From the lifetime behaviors, we got the information that these devices made with PUI or SPU as modified layer were stable and the curves of time-luminance characteristics were different from the general PLED. It is a very interesting phenomenon which is worth to be studied further.

    中文摘要 I ABSTRACT II 誌 謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 離子型聚脲酯 3 1-3 有機電激發光元件的發展 6 1-4 電激發光原理 10 1-5 元件原理及製作技術 12 1-6 研究動機與大綱 15 1-6-1 動機 15 1-6-2 大綱 16 第二章 羧酸鋰離子聚脲酯於陰極修飾層之研究 27 2-1 前言 27 2-2 實驗 29 2-2-1 離子型聚脲酯合成 29 2-2-2 高分子結構鑑定 30 2-2-3 熱穩定分析 31 2-2-4 偏光顯微鏡分析 32 2-2-5 元件厚度量測 32 2-2-6 發光元件組裝 33 2-2-7 光電特性量測 35 2-3 結果與討論 37 2-3-1 高分子結構分析 37 2-3-2 熱穩定度分析 38 2-3-3 偏光顯微鏡分析 39 2-3-4 元件厚度分析 39 2-3-5 電壓-電流-亮度特性分析 40 2-4 結論 45 第三章 磺酸鈉離子聚脲酯於陰極修飾層之研究 61 3-1前言 61 3-2實驗 61 3-2-1 離子型聚脲酯合成 61 3-2-2 高分子結構鑑定 62 3-2-3 熱穩定分析 62 3-2-4 偏光顯微鏡分析 63 3-2-5 發光元件組裝 63 3-2-6 光電特性量測 65 3-3 結果與討論 66 3-3-1 高分子結構分析 66 3-3-2 熱穩定分析 67 3-3-4 偏光顯微鏡分析 67 3-3-5 電流-電壓-亮度 ( I-V-L ) 特性 67 3-4 結論 70 第四章 總結與建議 81 4-2 總結 81 4-2 未來工作建議 82 參考文獻 83 自述 85

    1. H. M. Lee, K. H. Choi, D.H. Hwang, L. M. Do, T. Zyung, J. W. Lee, J. K. Park, Appl. Phys. Lett. 72, 2382, 1998.
    2. T. W. Lee, O.O. Park, Adv. Mater. 13, 1274, 2001.
    3. M. Pope, H. P. Kallmann and P.J. Magnante, J. Chem. Phys. 38, 2042, 1963.
    4. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913, 1987.
    5. R. H. Partridge, poloymer 24, 733, 1982.
    6. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539, 1990.
    7. D. Braun, A.J. Heeger, Appl. Phys. Lett., 58, 1982, 1991.
    8. A. J. Heeger, D. Braun (UNIAX),WO-B 92/16023, 1992.
    9. 顧鴻壽,”光電有機電激發光顯示器技術及應用”,p5.
    10. Sze, S. M. “Physics of Semiconductors” (Springer Verlag, Heidelberg. 1985)
    11. I. D. Park, J. Appl. Phys. 75, 1659, 1994.
    12. X. Zhang, S. A. Jenekhe, Macromolecules 33, 2069, 2000. ; X. Zhang, S. A. Jenekhe, ibid. 32, 7422, 1999.
    13. D. O`Brien, M. S. Weaver, D. G. Lidzey, D.D.C. Bradley, Appl. Phys. Lett. 69, 881, 1996.
    14. F. Nuesch, E. W. Forsythe, Q. T. Le, Y. Gao, L. J. Rothberg, J. Appl. Phys. 87, 7973, 2000.
    15. J. M. Burkland, J. Vac. Sci. Technol. 20, 440, 1982.
    16. Y. Gao, K. T. Park, B. R. Hsieh, J. Appl. Phys. 73, 7894, 1993.
    17. Y. Gao, K. T. Park, B. R. Hsieh, J. Chem. Phys. 97, 6991, 1992.
    18. S. A. Jeglinski, O. Amir, X. Wei, Z. V. Vardeny, J. Shinar, T. Cerkvenik, W. Chen, T. J. Barton, Appl. Phys. Lett. 67, 3960, 1995.
    19. L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152, 1997.
    20. F. Li, H. Tang, J. Anderegg, J. Shnar, Appl. Phys. Lett. 70, 1233, 1997.
    21. T. L. Wang, T. H. Hsieh, Polymer Degradation and Stability, 55, 95, 1997.
    22. Y. E. Kim, H. Park, J. J. Kim, Appl. Phys. Lett. 69, 599, 1996.
    23. A. Eisenberg, Macromolecules 3, 147, 1970.
    24. T. W. Lee and O. Ok Park, Appl. Phys. Lett. 76, 3161, 2000.

    下載圖示 校內:2006-07-08公開
    校外:2006-07-08公開
    QR CODE