簡易檢索 / 詳目顯示

研究生: 陳雅雯
Chen, Ya-wen
論文名稱: CPFR推拉式系統之績效分析
The Performance Analysis for Push and Pull System of CPFR
指導教授: 耿伯文
Kreng, Bo-Wen
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 53
中文關鍵詞: 預測及補貨模擬分析供應鏈管理協同規劃推拉式系統
外文關鍵詞: Simulation Analysis, Push and Pull System, CPFR, Supply Chain Management
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於資訊科技的快速發展,企業規模不斷的擴大,今日的商業戰爭已不再是企業個體的競爭,而是整個供應鏈的競爭,因此傳統的供應鏈模式已不滿足於現代企業的需求,於是整合性供應鏈管理因應而生,協同規劃、預測及補貨(Collaborative Planning, Forecasting and Replenishment, CPFR)的概念便是在此時產生,提供一個供應鏈協同運作的方式,讓供應鏈成員透過資訊網路,分享顧客的需求、市場預測及營業資訊等等,共同規劃、預測及補貨,並建立溝通協同的機制,解決在進行相關活動中有可能發生的問題。
    本研究將重心從以往CPFR應用在推式系統的分析,或是探討供應鏈成員間的協同策略,轉變為以推拉式系統的角度來評估三階式供應鏈若加入CPFR概念後,對整體供應鏈績效的影響。因此,本論文將利用模擬分析的方法,針對不同的協同策略,利用供應鏈績效衡量指標來看不同情境對供應鏈的影響性,此結果可提供不同產業導入CPFR時的參考依據。

    Because of the rapid development of Information Technology, the scale of enterprise has been enlarging, and the business war has turned from the competition between companies to the competition of whole supply chain. Therefore, traditional supply chain model cannot fit the demand of modern business, which results in the integrated supply chain, whose main concept is CPFR. CPFR offers a way of collaborative operation, which allows the members of supply chains to share the information on customers needs and sales, and do market forecasting through the Internet. By planning, forecasting, and replenishment together, the members of supply chains can build the system of collaboration and solve possible problems.
    We focus on the effect of three-echelon supply chain on whole supply chain performance after applying the concepts of CPFR to the system by the angle of push and pull system instead of the analysis of the application of CPFR to the push system. As a result, we will use the simulation analysis to analyze the effect on supply chain on different collaborative strategies in different contexts , with performance measurement indicators. It can be considered to be a database for different industries when they apply the concepts of CPFR to their management.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究流程 3 1.4 論文架構 5 第2章 文獻探討 6 2.1 供應鏈管理議題探討 6 2.1.1 供應鏈管理之定義 6 2.1.2 供應鏈之資訊分享 6 2.1.3 供應鏈之協同合作 8 2.2 CPFR協同規劃、預測與補貨 10 2.2.1 CPFR簡介 10 2.2.2 CPFR流程 10 2.2.3 CPFR關鍵績效指標 13 2.3 協同預測方法 14 2.3.1 傳統預測技術相關理論 14 2.3.2 協同預測 15 2.4 模擬 16 2.4.1 模擬概述 16 2.4.2 模擬的程序 17 2.4.3 模擬在供應鏈上的應用 18 第3章 CPFR四個情境模式之發展 20 3.1 供應鏈模擬模式 20 3.2 情境發展 25 3.3 模式相關設定 28 3.3.1 參數設定 28 3.3.2 資訊分享設定 28 3.3.3 協同情境細節設定 29 3.4 供應鏈之績效分析 30 第4章 模式應用 32 4.1 模式參數設定 32 4.2 CPFR四個情境模式之績效指標數據 33 4.2.1 無協同情境之績效 33 4.2.2 CPFR供應商主導情境之績效 34 4.2.3 CPFR製造商主導情境之績效 35 4.2.4 CPFR顧客集購情境之績效 36 4.3 各項情境之整合性分析 37 第5章 結論與建議 42 5.1 研究結論 42 5.2 未來研究建議 42 參考文獻 44 附錄 47

    Chatfield, D. C., Kim, J. G., Harrison, T. P., & Hayya, J. C. (2004). The bullwhip effect - impact of stochastic lead time, information quality, and information sharing: A simulation study. Production and Operations Management, 13(4), 340-353.
    Chen, C. C., Chen, Y.-T., & Chen, M. C. (2007). An aging theory for event life-cycle modeling. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 37(2), 237-248.
    Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46(3), 436-443.
    Chen, M.-C., Yang, T., & Li, H.-C. (2007). Evaluating the supply chain performance of IT-based inter-enterprise collaboration. Information & Management, 44(6), 524-534.
    Chen, T.-H., & Chen, J.-M. (2005). Optimizing supply chain collaboration based on joint replenishment and channel coordination. Transportation Research Part E: Logistics and Transportation Review, 41(4), 261-285.
    Gaur, V., Giloni, A., & Seshadri, S. (2005). Information sharing in a supply chain under ARMA demand. Management Science, 51(6), 961-969.
    Handfield, R. B., & Nichols, E. L. (1999). Introduction to supply chain management (Internation ed.). New York: Pre-Hall.
    Jain, C. L. (2000). Which forecasting model should we use? The journal of business forecasting, 19(3), 2,28,35.
    Jain, C. L. (2002). Benchmarking forecasting models. The Journal of Business Forecasting, Methods and System, 21(3), 18-20,30.
    Jeong, B., Jung, H.-S., & Park, N.-K. (2002). A computerized causal forecasting system using genetic algorithms in supply chain management. Journal of Systems and Software, 60(3), 223-237.
    Kuei, C.-H., Madu, C. N., Lin, C., & Chow, W. S. (2002). Developing supply chain strategies based on the survey of supply chain quality and technology management. International Journal of Quality & Reliability Management, 19(7), 889 - 901.
    Law, A. M. (2007). Simulation modeling and analysis (4th ed.). New York: McGraw Hill.
    Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management Science, 46(5), 626-643.
    Makridakis, S., & Wheelwright, S. C. (1997). Forecasting methods for management (5th ed.). New York: John Wiley & Sons.
    Margulis, R. (1999). One more acronym: CPFR takes a quick response to next level Trade & Industry, 15(3), 33-34.
    Petersen, K. J., Ragatz, G. L., & Monczka, R. M. (2005). An examination of collaborative planning effectiveness and supply chain performance. The Journal of Supply Chain Management, 41(2), 14-25.
    Rockwell (2003). Arena user's guide
    Sari, K. (2008). On the benefits of CPFR and VMI: A comparative simulation study. International Journal of Production Economics, 113(2), 575-586.
    Simatupang, T. M., & Sridharan, R. (2002). The collaborative supply chain. International Journal of Logistics Management, 13(1), 15-30.
    Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (Eds.). (2008). Designing and managing the supply chain : concepts, strategies, and case studies (3rd ed.). New York: McGraw Hill.
    Sohn, S. Y., & Lim, M. (2008). The effect of forecasting and information sharing in SCM for multi-generation products. European Journal of Operational Research, 186(1), 276-287.
    Stevens, G. C. (1989). Integrating the supply chain. International journal of Physical Distribution & Logistics, 19(8), 3-8.
    Tah, J. H. M. (2005). Towards an agent-based construction supply network modelling and simulation platform. Automation in Construction, 14(3), 353-359.
    Tyan, J., & Wee, H.-M. (2003). Vendor managed inventory: a survey of the Taiwanese grocery industry. Journal of Purchasing and Supply Management, 9(1), 11-18.
    VICS (2002). Collaborative planning forecasting and replenishment guideline V 2.0 available online at: www.vics.org
    Yu, H., Zeng, A. Z., & Zhao, L. (2005). Analyzing the evolutionary stability of the vendor-managed inventory supply chains. Computers & Industrial Engineering, In Press, Corrected Proof.
    Yue, X., & Liu, J. (2006). Demand forecast sharing in a dual-channel supply chain. European Journal of Operational Research, 174(1), 646-667.
    Zhao, X., Xie, J., & Leung, J. (2002). The impact of forecasting model selection on the value of information sharing in a supply chain. European Journal of Operational Research, 142(2), 321-344.

    無法下載圖示 校內:2108-07-14公開
    校外:2108-07-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE