簡易檢索 / 詳目顯示

研究生: 許宏彰
Hsu, Hung-Chang
論文名稱: 以整體擴散技術結合類神經網路分析極有限的 膀胱癌基因資訊
指導教授: 利德江
Li, De-Jiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 59
中文關鍵詞: 膀胱癌整體擴散技術類神經網路抑癌基因致癌基因
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   膀胱癌(bladder cancer)為泌尿道腫瘤中最常見的癌症,根據資料統計全世界膀胱癌患者每年約新增25萬人,且約有12萬人死於膀胱癌。膀胱癌的死亡率雖不是很高,發生率卻頗高,尤其台灣西南沿海烏腳病流行地區,發生率甚至是台灣其他地區的十倍,因此膀胱癌的診斷及治療已是現代醫學及公共衛生上不容小覷的問題。膀胱癌診斷一般是透過細胞診斷學的方法來瞭解癌細胞變化情形,然而,此種檢驗法只能診斷已形成腫瘤之膀胱癌細胞,目前尚沒有一種檢驗方法,能夠事先預測膀胱細胞之病變。由於基因是檢測癌症之重要指標,因此本研究試圖用基因之變化來預測膀胱癌之發生與否,但癌細胞的基因相當複雜且呈現不規則之變化,因此若能建立一套智慧型電腦系統,幫助診斷及分析受測者之癌細胞變化情形,將可協助醫師做早期之診斷及治療。

      由於癌症發展過程充滿複雜與多樣性,而統計方法常須在某種特定假設條件下運作,在應用上有其侷限性,且膀胱癌細胞株可收集到之個案數量相當少,並且其基因所轉譯之蛋白質產生量是呈非線性之排列,故臨床上很難做快速及準確的診斷。因此本研究應用整體擴散技術,將少量的膀胱癌細胞株基因組合變化歸納出邏輯性,擴增出大量的膀胱癌基因數據,並利用類神經網路系統之搜尋能力,透過啟發式的學習過程,將非線性之基因組合找出其相似之特質。另外,將整體擴散技術結合類神經網路與傳統類神經網路模式進行比較分析,發現整體擴散技術結合類神經網路之測試與訓練的結果,比一般傳統之類神經網路的診斷模式準確率更高。經由整體擴散技術結合類神經推論系統分析結果,在訓練資料從5筆增加到17筆時,所診斷出正常人及膀胱癌患者分類的準確率由81.67% 穩定成長提升至100%。因此,本研究希望利用整體擴散技術結合類神經網路的特性,用膀胱癌基因之變化作為膀胱癌早期診斷之工具,以及醫療照護人員的參考依據,進而增進醫療資源的有效運用,提高醫療服務品質。

    none

    摘要………………………………………………………………………………I 誌謝………………………………………………………………………………II 目錄………………………………………………………………………………III 圖目錄……………………………………………………………………………VI 表目錄……………………………………………………………………………VII 第一章 緒論 ……………………………………………………………………1 第一節 研究動機 ………………………………………………………………1 第二節 研究目的 ………………………………………………………………2 第三節 研究範圍與限制 ………………………………………………………2 第四節 研究方法與架構 ………………………………………………………3 第五節 論文大綱 ………………………………………………………………5 第二章 文獻探討 ………………………………………………………………6 第一節 膀胱癌概論 ……………………………………………………………6 2.1.1 癌症的成因………………………………………………………………7 2.1.2 膀胱癌的診斷方法………………………………………………………8 第二節 模糊理論 ………………………………………………………………9 2.2.1 模糊集合 ………………………………………………………………10 2.2.2 歸屬函數 ………………………………………………………………10 2.2.3 模糊規則與模糊推論 …………………………………………………10 第三節 類神經網路……………………………………………………………12 2.3.1 類神經網路的架構 ……………………………………………………12 2.3.2 類神經網路學習模式 …………………………………………………13 2.3.3 倒傳遞類神經網路 ……………………………………………………14 第四節 模糊類神經網路………………………………………………………15 2.4.1 模糊類神經網路模式 …………………………………………………15 2.4.2 適應性類神經模糊推論系統 …………………………………………17 第五節 小樣本學習……………………………………………………………19 2.5.1 虛擬樣本 ………………………………………………………………20 2.5.2 整體模糊化 ……………………………………………………………20 2.5.3 資訊擴展 ………………………………………………………………23 第六節 疾病診斷的相關研究…………………………………………………24 第七節 小結……………………………………………………………………27 第三章 研究方法………………………………………………………………28 第一節 系統的架構……………………………………………………………28 3.1.1 研究範圍 ………………………………………………………………30 3.1.2 基本假設 ………………………………………………………………30 3.1.3 資料取得 ………………………………………………………………30 3.1.4 輸入變數 ………………………………………………………………31 3.1.5 輸出變數 ………………………………………………………………31 第二節 研究流程………………………………………………………………31 3.2.1 樣本擴展技術 …………………………………………………………31 3.2.2 母體值域的估計 ………………………………………………………33 3.2.3 建構類神經網路 ………………………………………………………35 第三節 網路的訓練與測試……………………………………………………36 第四節 小結……………………………………………………………………39 第四章 實證研究………………………………………………………………40 第一節 案例說明………………………………………………………………40 第二節 網路系統………………………………………………………………42 4.2.1 模式建立 ………………………………………………………………42 4.2.2 網路學習參數之設定 …………………………………………………43 第三節 診斷績效………………………………………………………………43 4.3.1 實驗步驟 ………………………………………………………………44 4.3.2 訓練績效 ………………………………………………………………46 4.3.3 網路模式之建立與比較 ………………………………………………48 第四節 小結……………………………………………………………………51 第五章 結論與建議……………………………………………………………53 第一節 結論……………………………………………………………………53 第二節 建議……………………………………………………………………54 參考文獻 ………………………………………………………………………56

    江漢聲、鍾啟榮、吳建志、陳慧敏、洪清霖,(1993),臺灣烏腳病地區膀胱癌因子的回溯比較和臺灣區膀胱癌病人的對照分析,中華民國癌症醫學會會刊,9,4-10。

    葉怡成,(2001),類神經網路模式應用與實作(七版),儒林圖書有限公司。

    Altug, S., Chow, M. Y. & Trussell, H. J. (1999). Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis. IEEE Transactions on Industrial Electronics, 46(6), 1069-1079.

    Anthony, M. & Biggs, N. (1992). Computational learning theory. Cambridge University Press, Cambridge.

    Belal, S. Y., Taktak, A. F. G., Nevill, A. J. & Spencer, S. A. (2001). A fuzzy system for detecting distorted plethysmogram pulses in neonates and paediatric patients. Physiological Measurement, 22, 397–412.

    Belal, S. Y., Taktak, A. F.G., Nevill, A. J., Spencer, S. A., Roden, D. & Bevan, S.(2002). Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system. Artificial Intelligence in Medicine, 24, 149–165.

    Bishop, J. M.(1991). Molecular themes in oncogenesis. Cell, 64, 235–248.

    Cheng, J., Huang, H., Zhang, Z. T., Shapiro, E., Pellicer, A., Sun, T. T. & Wu, X. R. (2002). Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Research, 62, 4157–4163.

    Gontero, P., Tizzani, A., Muir, G. H., Caldarera, E. & Macaluso, M. P. (2001). The genetic alterations in the oncogenic pathway of transitional cell carcinoma of the bladder and its prognostic value. Urological Research, 29, 377–387.

    Güler, İ. & Übeyli, E. D. (2003). Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Computers in Biology and Medicine, 33(4), 333–343.

    Güler, İ. & Übeyli, E. D. (2004). Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction. Expert Systems with Applications, 27, 323–330.

    Gupta, M. M. & Rao, D. H. (1994). On the principle of fuzzy neural networks. Fuzzy Sets and Systems, 61, 1-18.

    Gupta, M. M. (2001). State of the art of neuro-fuzzy systems and their applications to intelligent manufacturing and fault diagnosis. IFSA World Congress and 20th NAFIPS International Conference, 1, 281-285.

    Heckerling, P. S., Gerber, B. S., Tape, T. G. & Wigton, R. S. (2003). Prediction of community-acquired pneumonia use artificial neural network. Medical Decision Making, 23, 112–121.

    Hiroshi, H., Yasuyuki, O., Hitomi, N., Seigo, T., Hiroyuki, T. & Hiroki, M. (1996). Application of neural network to the interpretation of laboratory data for the diagnosis of two forms of chronic active hepatitis, International Hepatology Communications, 5, 160-165.

    Huang, C.F. & Moraga, C., (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35, 137-161.

    Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.

    Jang, J. S. & Sun, C. T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3), 378-406.

    Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Bertbold, F., Schwab, M., Antonescu, C. R., Peterson, C. & Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673-679.

    Kwok, H. F., Linkens, D. A., Mahfouf, M. & Mills, G. H. (2003). Rule-base derivation for intensive care ventilator control using ANFIS. Artificial Intelligence in Medicine, 29, 185–201.

    Levine, A. J., Perry, M. E., Chang, A., Silver, A., Pittmer, D., Wu, M. & Welsh, D. (1994). The 1993 walter Hubert lecture: The role of the p53 tumor-suppressor gene in tumorigenesis. British Journal of Cancer, 69, 409–416.

    Li, D. C., Chen, L. S. & Lin, Y. S., (2003a). Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41, 4011-4024.

    Li, D. C., Wu, C. S. & Chang, F. M., (2003b). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. International Journal of Advanced Manufacturing Technology. in press.

    Li, D. C., Wu, C. S., Tsai, T. I. & Chang, F. M., (2004). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research. in press.

    McAuley, K. A., Williams, S. M., Mann, J. I., Wlaker, R. J., Lewis, N. J., Temple, L. A. & Duncan, A. W. (2002). Diagnosing insulin resistance in the general population. Diabetes Care, 24(3), 460-464.

    Marta, S. C., Socci, N. D., Charytonowicz, E., Lu, M. Prystowsky, M., Childs, G. & Carlos, C.C. (2002). Molecular profiling of bladder cancer using cDNA microarrays: Defining histogenesis and biological phenotypes. Cancer Research, 62, 6973-6980.

    Niyogi, P., Girosi, F. & Tomaso, P., (1998). Incorporating prior information in machine learning by creating virtual examples. Proceeding of the IEEE, 275-298.

    Quek, M. L., Quinn, D. I., Daneshmand, S. & Stein, J. P. (2003). Molecular prognostication in bladder cancer— a current perspective. European Journal of Cancer, 39, 1501–1510.

    Sugeno, M. & Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28, 15-33.

    Tabaei, B. P. & Herman, W. H. (2002). A multivariate logistic regression equation to screen for diabetes. Diabetes Care, 25(11), 1999-2003.

    Takahashi, H., Masuda, K., Ando, T., Kobayashi, T. & Honda, H. (2004). Prognostic predictor with multiple fuzzy neural models using expression profiles from DNA microarray for metastases of breast cancer. Journal of Bioscience and Bioengineering, 98(3), 193–199.

    Tan, K. C., Yu, Q., Heng, C. M. & Lee, T.H. (2003). Evolutionary computing for knowledge discovery in medical diagnosis. Artificial Intelligence in Medicine, 27, 129-154.

    Übeyli , E. D. & Güler, İ. (2003). Neural network analysis of internal carotid arterial Doppler signals: Predictions of stenosis and occlusion. Expert Systems with Applications, 25(1), 1–13.

    下載圖示 校內:2025-06-29公開
    校外:2025-06-29公開
    QR CODE