簡易檢索 / 詳目顯示

研究生: 劉柏佑
Liu, Bo-You
論文名稱: 氧化鎵半導體之應變規與溫度感測器及Si-CMOS單光子感測器之優化與整合
Optimization and integration of β-Ga2O3 based temperature-strain sensors and Si-CMOS based Single-photon avalanche photodetector
指導教授: 李劍
Li, Jian V.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: SPADT18HVG2β-Ga2O3應變規溫度感測器
外文關鍵詞: SPAD, T18HVG2, β-Ga2O3, strain gauge, temperature sensor
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用CMOS單光子崩潰二極體偵測器的優勢,可以製作出小體積、低成本、高效率及與外部電路整合成的一個晶片,在製程的選擇上利用台積電0.18 μm標準高壓製程(T18HVG2)所製作,透過元件設計技巧來調整junction位置以及表層Metal之設計,設計出光增強的形狀與主動區直徑來增加PDE,而最佳的參數為SPAD主動區直徑為6 μm。
    基於Pt/β-Ga2O3作為薄膜應變規與溫度感測器,並配合上自身設計的應變平台來量測應變,並將金屬沉積於(1 0 0)面上,量測半導體電學性能,並取用動態電阻來觀測電阻變化,其室溫下應變係數達到-200,變溫量測中的溫度靈敏度為-2.83+-0.206mV/K。

    This study takes advantages of the CMOS single-photon breakdown diode detector to produce a small size, low cost, high efficiency, and integrate it with external circuits into a single chip. TSMC's 0.18 μm standard high voltage process(T18HVG2) is used in the selection of the process. By adjusting the junction position and the design of the surface metal through component design techniques, the shape of the light enhancement and the diameter of active region is designed to increase the PDE. The best parameter is the 6 μm diameter of active region.
    Based on Pt / β-Ga2O3 as a film strain gauge and temperature sensor, and with its own designed strain platform to measure strain, and the metal is deposited on the (1 0 0) surface, the electrical properties of the semiconductor are measured, and the dynamic resistance is used to observe the resistance change. The gauge factor reaches -200 at room temperature, and its temperature sensitivity is:-2.83+-0.206mV/K.

    摘要 I SUMMARY II INTRODUCTION III METHOD III RESULTS AND DISCUSSION IV 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章、 緒論 1 1-1 研究背景與動機 1 1-2 氧化鎵簡介 2 1-3 應變規與溫度感測器簡介 3 1-3-1 應變規 3 1-3-2 溫度感測器 4 1-4 單光子崩潰二極體偵測器(SPAD)簡介 5 1-5 本文架構 7 第二章、 β-Ga2O3接觸理論及製程 8 2-1 金半接觸之Schottky contact理論 8 2-2 I-V量測理論 10 2-3 元件製程及量測設備簡介 12 2-3-1 元件介紹與切割 12 2-3-2 有機清洗 13 2-3-3 濕式蝕刻 13 2-3-4 電極製備 13 2-3-5 熱退火 14 2-4 應變規之應變模擬與實驗架構 15 2-5 變溫量測實驗架構 18 第三章、 β-Ga2O3量測結果與討論 21 3-1 Schottky 二極體電性 21 3-2 常溫下量測結果 22 3-3 溫度感測器量測 27 第四章、 SPAD之操作原理及設計 30 4-1 光偵測原理及崩潰截止電路 30 4-1-1 光偵測原理 30 4-1-2 被動截止電路簡介 32 4-2 SPAD性能指標 33 4-2-1 崩潰電壓 34 4-2-2 暗計數 Dark Count Rate 35 4-2-3 定時抖動 Jitter time 38 4-2-4 光子偵測效率 Photon Detection Efficiency 39 4-3 模型建立與元件佈局 39 4-3-1 晶片設計流程 39 4-3-2 TCAD模型 40 4-3-3 Laker元件佈局概念 49 4-4 量測設備與校正 52 4-4-1 量測設備介紹 52 4-4-2 PDE校正與量測手法 54 第五章、 SPAD元件量測結果與討論 56 5-1 模擬結果 56 5-1-1 第一次下線 56 5-1-2 第二次下線 61 5-2 量測結果 66 5-2-1 第一次下線 67 5-2-2 第二次下線 73 第六章、 結論與未來工作 78 參考文獻 80

    [1] Marezio, M. & Remeika, J. P. Bond Lengths in the α‐Ga2O3 Structure and the High‐Pressure Phase of Ga2−xFexO3. The Journal of Chemical Physics 46, 1862-1865 (1967).
    [2] Ahman, J., Svensson, G. & Albertsson, J. A Reinvestigation of [beta]-Gallium Oxide. Acta Crystallographica Section C 52, 1336-1338 (1996).
    [3] Pohl, K. Hydrothermale Bildung von γ-Ga2O3. Naturwissenschaften 55, 82-82 (1968).
    [4] Yoshioka, S. et al. Structures and Energetics of Ga2O3 Polymorphs. Journal of Physics: Condensed Matter 19, 346211 (2007).
    [5] Playford, H. Y., Hannon, A. C., Barney, E. R. & Walton, R. I. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Chemistry – A European Journal 19, 2803-2813 (2013).
    [6] Kumar, S., Pratiyush, A. S., Muralidharan, R., & Nath, D. N. A performance comparison between β-Ga2O3 and GaN High Electron Mobility Transistors. arXiv preprint arXiv:1802.02313. (2018).
    [7] Nowak, R., Pessa, M., Suganuma, M., Leszczynski, M., Grzegory, I., Porowski, S., & Yoshida, F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Applied Physics Letters, 75(14), 2070-2072 (1999).
    [8] 林于耀. 基於氧化鎵 (β-Ga2O3) 半導體之應變規與溫度感測器. 成功大學航空太空工程學系學位論文, 1-73. (2019).
    [9] Huang, Y. H. 單光子崩潰二極體之元件尺寸與串音效應. 交通大學電子工程系所學位論文, (2016).
    [10] Richardson, J.A. Time resolved single photon imaging in Nanometer Scale CMOS technology (Doctoral dissertation, University of Edinburgh). (2010).
    [11] Durini, D., Paschen, U., Schwinger, A., & Spickermann, A. Silicon based single-photon avalanche diode (SPAD) technology for low-light and high-speed applications.In Photodetectors (pp.345-371). Woodhead Publishing. (2016).
    [12] Zappa, F., Tisa, S., Tosi, A., & Cova, S. Principles and features of single-photon avalanche diode arrays. Sensors and Actuators A: Physical, 140(1), 103-112. (2007).
    [13] Sze, S. M., & Ng, K. K. Physics of semiconductor devices. John wiley & sons. (2006).
    [14] Fishburn, M. W. Fundamentals of CMOS single-photon avalanche diodes. fishburn. (2012).
    [15] Rech, I., Ingargiola, A., Spinelli, R., Labanca, I., Marangoni, S., Ghioni, M., & Cova, S. Optical crosstalk in single photon avalanche diode arrays: a new complete model. Optics express, 16(12), 8381-8394. (2008).
    [16] Palubiak, D. CMOS SINGLE PHOTON AVALANCHE DIODES AND TIME-TO-DIGITAL CONVERTERS FOR TIME-RESOLVED FLUORESCENCE ANALYSIS (Doctoral dissertation). (2016).
    [17] Cova, S., Ghioni, M., Lotito, A. R. T. U. R. O., Rech, I., & Zappa, F. Evolution and prospects for single-photon avalanche diodes and quenching circuits. journal of modern optics, 51(9-10), 1267-1288. (2004).
    [18] Plakhotnyuk, M. Nanostructured Heterojunction Crystalline Silicon Solar Cells with Transition Metal Oxide Carrier Selective Contacts. (2018).
    [19] Wu, J. Y. 互補式金屬氧化物半導體製程單光子累崩光偵測器特性與其應用. 交通大學電子工程系所學位論文, 1-131. (2015).
    [20] 許方則, et al. 標準 CMOS 製程之低暗記數單光子崩潰二極體. 交通大學電子工程系所學位論文. (2012).
    [21] Wu, D. R., Tsai, C. M., Huang, Y. H., & Lin, S. D. Crosstalk between single-photon avalanche diodes in a 0.18-μm high-voltage CMOS process. Journal of Lightwave Technology, 36(3), 833-837. (2018).
    [22] Okuto, Y., & Crowell, C. R. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions. Solid-State Electronics, 18(2), 161-168. (1975).
    [23] Hornsey, R. Design and fabrication of integrated image sensors. Institute for Computer Research, University of Waterloo, Waterloo, Canada, Short-course Notes. (1998).
    [24] Schroder, D. K. Semiconductor material and device characterization. John Wiley & Sons. (2015).
    [25] Yao, Y., Davis, R. F., & Porter, L. M. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties. Journal of Electronic Materials, 46(4), 2053-2060. (2017).
    [26] Eickhoff, M., & Stutzmann, M. Influence of crystal defects on the piezoresistive properties of 3C–SiC. Journal of applied physics, 96(5), 2878-2888. (2004).
    [27] Higashiwaki, M. et al. Research and Development on Ga2O3 Transistors and Diodes. The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications. The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, 100-103 (2013).
    [28] Janis RESEARCH CO.,INC. ADDENDUM TO OPERATING INSTRUCTIONS FOR CCS-400H/204 SYSTEM, 20914.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE