研究生: |
陳祐任 Chen, Yu-Jen |
---|---|
論文名稱: |
三維十字微管道中液滴合成後混合機制之數值模擬 Numerical Simulation of Mixing Mechanism of Droplet Synthesis in Three-Dimensional Cross Microchannel |
指導教授: |
李定智
Lee, Denz |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 合成液滴混合 、三維十字交疊微管道 、數值模擬 |
外文關鍵詞: | Synthetic droplet mixing, 3D Cross Microchannel, Numerical Simulation |
相關次數: | 點閱:95 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微機電系統(MEMS)體積小、成本低及反應時間快…等優勢陸續被人們所看見,因此更多人選擇在微小尺度的平台上做更多的研究,但隨著研究種類越來越多,也使得實驗的結構越來越複雜,因此雖然有如此多的優點,但還是需要有更多的儀器設備來互相輔助及配合。
在先前的研究中因為只能透過顯微鏡去觀測合成液滴在二維平面的混合狀態,因此本研究中使用數值模擬的方式觀測液滴在不同角度中的形成過程。本研究在數值模型選擇上主要選用VOF以及Species模型,其中VOF模型控制著液滴生成、Species模型控制著合成液滴內試劑與水的混合,使用以上設定模擬出三維十字交疊管內的液滴形成、液滴內試劑與水的混合,並將模擬數據與實驗數據做對比發現兩者液滴生成的尺寸數據在定性上是相同的,最後把「混合程度」做定量化以便我們探討不同尺寸的合成液滴在不同轉彎類型管道中其合成液滴內混合的優劣。
With micro-electromechanical system(MEMS) small size, low cost, fast response time and other advantages been seen, more and more people choose to do research on the micro-scale platform. However ,with the increasing variety of research ,the structure of the experiment is becoming more and more complex. Although there are so many advantages ,it is necessary to have more instruments and equipment to assist and cooperate with each other.
In the previous study, it was only possible to observe the mixed process of synthetic droplets in two-dimensional plane by microscope, in this study, numerical simulation is used to observe the mixing process of droplets by different perspective.
The VOF and Species models are mainly used in the selection of numerical models, the vof model controls the droplet generation, the species model controls the mixing of reagent and water in synthetic droplets, and use the above settings to simulate the formation of droplets in the three-dimensional cross microchannel and mixing of reagent and water in the droplet ,and we comparing the simulated data with the experimental data ,it is found that both droplet’s size data are qualitatively the same. In the end, we quantified the "mixing index" so that we can discuss different size droplet mixing in different type microchannels so we can tell which microchannel is much better.
1.Talary, M. S., Burt, J. P. H., & Pethig, R, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117(7), 191-203,1999.
2.van Hal, N. L., Vorst, O., van Houwelingen, A. M., Kok, E. J., Peijnenburg, A., Aharoni, A., ... & Keijer, J. “The application of DNA microarrays in gene expression analysis” , Journal of Biotechnology, 78(3), 271-280, 2000.
3.Wang, W., Shao, T., Zhao, S., Jin, Y., & Cheng, Y. “Experimental and numerical study of mixing behavior inside droplets in microchannels”. AIChE Journal, 59(5), 1801-1813, 2013.
4.Tice, J. D., Song, H., Lyon, A. D., & Ismagilov, R. F. “Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers”. Langmuir, 19(22), 9127-9133, 2003.
5.Gupta, A., & Kumar, R. “Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction”. Microfluidics and Nanofluidics, 8(6), 799-812, 2010.
6.黃明輝,“三維十字型微管道之液滴生成研究”成功大學航空太空工程學系學位論文,2012.
7.王维萌, 馬一萍, & 陳, “十字交叉微通道内微液滴生成過程的數值模擬”, 化工學報, 66(5), 1633-1641, 2015
8.Tice, J. D., Song, H., Lyon, A. D., & Ismagilov, R. F. “Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers”. Langmuir, 19(22), 9127-9133, 2003.
9.Hung, L. H., Choi, K. M., Tseng, W. Y., Tan, Y. C., Shea, K. J., & Lee, A. P, “Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis”. Lab on a Chip, 6(2), 174-178, 2006.
10.Lee, D., & Chen, Y. T. “Mixing in tangentially crossing microchannels”, AIChE journal, 57(3), 571-580, 2011.
11.王佳男, 王嘉駿, 馮連芳, & 顧雪萍, “彎曲微通道中液滴内混合過程的數值模擬研究”. 高校化學工程學報, 2, 218-222, 2014.
12.Wang, W., Shao, T., Zhao, S., Jin, Y., & Cheng, Y, “Experimental and numerical study of mixing behavior inside droplets in microchannels”, AIChE Journal, 59(5), 1801-1813, 2013.
13.Özkan, A., & Erdem, E. Y, “Numerical analysis of mixing performance in sinusoidal microchannels based on particle motion in droplets”, Microfluidics and Nanofluidics, 19(5), 1101-1108, 2015.
14.Li, Y., Reddy, R. K., Kumar, C. S., & Nandakumar, K, “Computational investigations of the mixing performance inside liquid slugs generated by a microfluidic T-junction”, Biomicrofluidics, 8(5), 054125, 2014.
15.O.Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London, 174, 1883.
16.Peng, X. F., Peterson, G. P., & Wang, B. X, “Frictional flow characteristics of water flowing through rectangular microchannels”, Experimental Heat Transfer An International Journal, 7(4), 249-264, 1994.
17.Gad-el-Hak, M, “The fluid mechanics of microdevices—the Freeman scholar lecture”, Journal of Fluids Engineering, 121(1), 5-33, 1999.
18.Yang, L., Li, S., Liu, J., & Cheng, J, “Fluid mixing in droplet‐based microfluidics with T junction and convergent–divergent sinusoidal microchannels”, Electrophoresis,
39(3), 512-520, 2018.
19.Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M, “Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up”, Lab on a Chip, 6(3), 437-446, 2006.
20.賴柏佑, “三維十字型微管道液滴生成之數值模擬”,國立成功大學航空太空工程學系學位論文, 2017.
21.鍾健群, “雙重包覆液滴生成之數值模擬”,國立成功大學航空太空工程學系學位論文,2018.
22.Tanthapanichakoon, W., Aoki, N., Matsuyama, K., & Mae, K, “Design of mixing in microfluidic liquid slugs based on a new dimensionless number for precise reaction and mixing operations”, Chemical Engineering Science, 61(13), 4220-4232, 2006.