| 研究生: |
林含諭 Lin, Han-Yu |
|---|---|
| 論文名稱: |
新型螢光粉體:釩酸鈣共摻雜鹼土族與稀土離子之合成與光學特性探討 The Syntheses and Optical Investigations of New Phosphors: Calcium Vanadates Codoped with Alkaline Earth and Rare Earth Ions |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 多晶矽太陽能電池 、光譜響應變化 、有機太陽能電池 、「螢光粉轉換」白光發光二極體 、晶格常數 、能量轉移 、螢光粉 、增感劑 、對稱性 、固態反應法 |
| 外文關鍵詞: | Phosphors, site symmetry, CuPc-based solar cells, SR's variation, poly-Si solar cells, lattice constants, solid-state reaction method, energy transfer, phosphor-converted white LED, sensitizer |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首度透過固態反應法合成(Ca, IIA)3(VO4)2: Eu3+ (IIA=Mg, Sr, Ba)紅色螢光粉,並由實驗得知最佳燒結條件為1050 ℃持溫6個小時。為了提升Ca2.82(VO4)2: 0.12Eu3+的發光強度,我們試著將鈣離子以其它二價鹼土族離子取代,並發現當激發波長為465 nm,鎂、鍶、鋇離子於不同濃度下均能提升Ca2.82(VO4)2: 0.12Eu3+的PL強度。根據晶格常數的變化,我們推斷PL強度的增強可能是因為非中心對稱的Eu3+離子之對稱性降低所致;我們也發現鎂、鍶、鋇離子中,鋇離子的取代能夠提升最多的PL強度,並在9.9 mol%達到最佳值。經過計算,(Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+的PL積分強度與Ca2.82(VO4)2: 0.12Eu3+比較起來,提升了1.36倍。本研究合成出的(Ca, Ba)3(VO4)2: Eu3+螢光粉與商用之適用藍光激發的硫化物紅色螢光粉比較起來,具備高化學穩定性與無硫污染的優勢。
我們利用Sm3+離子作為增感劑,成功地提升了(Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+的發光強度。從Sm3+發射峰的衰減與Eu3+發射峰的增長,以及當Eu3+濃度遞增時,Sm3+離子之4G5/2→6H9/2躍遷的衰減行為分析,我們發現Sm3+→Eu3+的能量轉移。我們透過實驗計算出能量轉移效率、能量轉移機率與臨界濃度,並證實Sm3+→Eu3+屬於偶極—四極的反應機制。由於波長為465 nm的藍光能夠有效地激發 (Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+紅色螢光粉,故此最佳化的螢光粉配合波長為450-470 nm的藍光二極體晶片,具備應用於「螢光粉轉換」白光發光二極體的潛力。此外,因為(Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+紅色螢光粉的PLE與PL光譜與CuPc的吸收光譜具備良好的重疊,所以將此紅色螢光粉作為有機太陽能電池的下轉換層之螢光粉材料,有機會提升太陽能電池的性能。
我們也合成出新的適用紫外光激發的紅外光螢光粉Ca3(VO4)2: Yb3+。當激發波長為310 nm,此螢光粉產生位於983 nm的發射峰,並在Yb3+離子為14 mol%時達到最佳發光強度。從多晶矽太陽能電池的光譜響應圖,我們可以發現Ca3(VO4)2: Yb3+螢光粉具備高達約0.6 A/W的光譜響應變化,故此紅外光螢光粉對於提升多晶矽太陽能電池的光電轉換效率,乃一值得考慮的螢光粉材料。
In this thesis, the (Ca, IIA)3(VO4)2: Eu3+ (IIA=Mg, Sr, Ba) red phosphors were prepared by the solid-state reaction method for the first time, and the preferable sintered condition was obtained at 1050 oC for 6 h. To improve the luminescence intensity of Ca2.82(VO4)2: 0.12Eu3+, an attempt was made to replace Ca2+ by (IIA)2+. It was found either of IIA substitution enhanced the PL intensity of Ca2.82(VO4)2: 0.12Eu3+ at different (IIA)2+ contents under 465 nm excitation. According to the changes of the lattice constants, this enhancement may originate from the lower site symmetry of the Eu3+ ion in the center with noninversion symmetry. It was noted Ba2+ was the best choice of (IIA)2+ ions (IIA=Mg, Sr, Ba) in partial substitution for Ca2+ to enhance the PL intensity. And the optimum value of the Ba2+ content (y) was at 9.9 mol% in (Ca1-yBay)2.82(VO4)2: 0.12Eu3+. The (Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+ phosphor showed 136% improved integrated intensity than that of the Ca2.82(VO4)2: 0.12Eu3+ phosphor. Compared to commercial oxysulfide and sulfide red phosphors suitable for blue excitation, our synthesized phosphor (Ca, Ba)3(VO4)2: Eu3+ has the advantages of no chemical instability and sulfur pollution.
The luminescence intensity of (Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+ phosphor has been successfully further enhanced by adding the sensitizer, Sm3+ ion. We have discovered the energy transfer from Sm3+ to Eu3+ through the relative decline and growth in emission peaks of Sm3+ and Eu3+, respectively, as well as the variation of the decay behaviors of the Sm3+ 4G5/2→6H9/2 transition with the increasing Eu3+ content. The mechanism of the energy transfer from Sm3+ to Eu3+ was investigated and determined as the dipole-quadrupole interaction. The energy transfer efficiency, probability and the critical concentration in our Sm3+→Eu3+ system were also estimated. The optimized red phosphor (Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+ is well-excited by the 465 nm blue lights, so it gives a potential for this phosphor to be applied on the phosphor-converted white LED with a blue chip (450-470 nm). Besides, the good overlap of the PLE and PL spectrum of (Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+ phosphor and the absorption spectrum of CuPc indicates the potential use of the down-conversion phosphor coating to increase the performances of CuPc-based solar cells.
We also synthesized the new infrared Ca3(VO4)2: Yb3+ phosphors suitable for UV excitation. The infrared emission peak at 983 nm under excitation of 310 nm was observed and the optimum Yb3+ content was 14 mol%. And the sufficiently large SR’s variation (~0.6 A/W) of a poly-Si solar cell for this phosphor indicates this phosphor can be used as a potential candidate to increase the power conversion efficiency of poly-Si solar cells.
[1] W.J. Park, M.K. Jung and D.H. Yoon, “Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation,” Sensor. Actuat. B: Chem., 126, 324-327 (2007)
[2] B.S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells, 90, 1189-1207 (2006)
[3] A.K. Levine and F.C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett., 5, No. 6, 118–120 (1964)
[4] G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin Heidelberg, pp. 134,135 (1994)
[5] M. Yu, J. Lin and S.B. Wang, “Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YVxP1-xO4:Eu3+ and RVO4:Eu3+ thin-film phosphors,” Appl. Phys. A: Mater. Sci. Process., 80, No. 2, 353-360 (2005)
[6] K.S. Sohn, I.W. Zeon, H. Chang, S.K. Lee and H. D. Park, “Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R = As, Nb, P, V) system,” Chem. Mater., 14, 2140-2148 (2002)
[7] C.C. Wu, K.B. Chen, C.S. Lee, T.M. Chen and B.M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater., 19, 3278-3285 (2007)
[8] H. Lai, B. Chen, W. Xu, Y. Xie, X. Wang and W. Di, “Fine particles (Y,Gd)PxV1-xO4:Eu3+ phosphor for PDP prepared by coprecipitation reaction,” Mater. Lett., 60, 1341-1343 (2006)
[9] C.H. Kim, I.E. Kwon, C.H. Park, Y.J. Hwang, H.S. Bae, B.Y. Yu, C.H. Pyun and G.Y. Hong, “Phosphors for plasma display panels,” J. Alloys Compd., 311, 33-39 (2000)
[10] C. K. Jörgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys., 8, 281–290 (1964)
[11] F.C. Palilla, A.K. Levine and M. Rinkevics, “Rare earth activated phosphors based on yttrium orthovanadate and related compounds,” J. Electrochem. Soc., 112, No. 8, 776–779 (1965)
[12] M.A. Aia, “Structure and luminescence of the phosphate-vanadates of Yttrium, Gadolinium, Lutetium, and Lanthanum,” J. Electrochem. Soc., 114, No. 4, 367–370 (1967)
[13] G. Blasse and A. Bril, “Luminescence of phosphors based on host lattices ABO4 (A is Sc, In; B is P, V, Nb),” J. Chem. Phys., 50, No. 7, 2974–2980 (1969)
[14] S. Neeraj, N. Kijima and A.K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn1-xVO4; Eu3+/Sm3+ (Ln = Y, Gd),” Solid State Commun., 131, 65–69 (2004)
[15] M. Nazarov, J.H. Kang, D.Y. Jeon, S. Bukesov and T. Akmaeva, “Synthesis and luminescent performances of some europium activated yttrium oxide based systems,” Opt. Mater., 27, 1587–1592 (2005)
[16] J.H. Kang, W.B. Im, D.C. Lee, J.Y. Kim, D.Y. Jeon, Y.C. Kang and K.Y. Jung, “Correlation of photoluminescence of (Y, Ln)VO4:Eu3+ (Ln = Gd and La) phosphors with their crystal structures,” Solid State Commun., 133, 651-656 (2005)
[17] X. Fu, S. Niu, H. Zhang and Q. Xin, “Photoluminescence properties of nanocrystalline A3(VO4)2:Eu (A = Mg, Ca, Sr and Ba),” Spectroscopy and Spectral Analysis, 26, No. 1, 27-29 (2006)
[18] X.Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd., 421, 273-278 (2006)
[19] X. Xiao and B. Yan, “Chemical co-precipitation of hybrid precursors to synthesize Eu3+/Dy3+ activated YNbxP1-xO4 and YNbxV1-xO4 microcrystalline phosphors,” J. Non. Cryst. Solids, 352, 3047-3051 (2006)
[20] H. Zhang, M. Lü, Z. Xiu, G. Zhou, S. Wang, Y. Zhou and S. Wang, “Influence of processing conditions on the luminescence of YVO4:Eu3+ nanoparticles,” Mater. Sci. Eng. B, 130, 151-157 (2006)
[21] L. Tian and S.I. Mho, “Enhanced photoluminescence of YVO4:Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion,” J. Lumin., 122-123, 99-103 (2007)
[22] W.J. Park, M.K. Jung, S.J. Im and D.H. Yoon, “Photoluminescence characteristics of energy transfer between Bi3+ and Eu3+ in LnVO4: Eu, Bi (Ln = Y, La, Gd),” Colloids Surf. A: Physicochem. Eng. Aspects, 313-314, 373-377 (2008)
[23] Y. Wang, Y. Sun, J. Zhang, Z. Ci, Z. Zhang and L. Wang, “New red Y0.85Bi0.1Eu0.05V1-yMyO4 (M = Nb, P) phosphors for light-emitting diodes,” Physica B, 403, 2071-2075 (2008)
[24] W.J. Park, M.K. Jung, T. Masaki, S.J. Im and D.H. Yoon, “Characterization of YVO4:Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method,” Mater. Sci. Eng. B, 146, 95-98 (2008)
[25] S. Choi, Y.M. Moon, K. Kim, H.K. Jung and S. Nahm, “Luminescent properties of a novel red-emitting phosphor: Eu3+-activated Ca3Sr3(VO4)4,” J. Lumin., 129, No. 9, 988-990 (2009)
[26] S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, “Enhanced Red Emission in CaMoO4:Bi3+,Eu3+,” J. Phys. Chem. C, 111, No. 35, 13256-13260 (2007)
[27] M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima and T. Mukai, “Red-enhanced white-light-emitting diode using a new red phosphor,” Jpn. J. Appl. Phys., 42, Part 2, No. 1A/B, L20-L23 (2003)
[28] X. Piao, T. Horikawa, H. Hanzawa and K.I. Machida, “Characterization and luminescence properties of Sr2Si5N8: Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett., 88, 161908 (1-3) (2006)
[29] Z. Wang, H. Liang, L. Zhou, H. Wu, M. Gong and Q. Su, “Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2 and its application in near UV InGaN-based light-emitting diode,” Chem. Phys. Lett., 412, 313-316 (2005)
[30] V.P. Singh, B. Parsarathy, R.S. Singh, A. Aguilera, J. Anthony and M. Payne, “Characterization of high-photovoltage CuPc-based solar cell structures,” Sol. Energy Mater. Sol. Cells, 90, 798–812 (2006)
[31] A. Yakimov and S.R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters,” Appl. Phys. Lett., 80, No. 9, 1667–1669 (2002)
[32] T. Tsutsui, T. Nakashima, Y. Fujita and S. Saito, “Photovoltaic conversion efficiency in copper-phthalocyanine / perylenetetracarboxylic acid benzimidazole heterojunction solar cells,” Synthetic Met., 71, 2281–2282 (1995)
[33] H. Zhang, M. Lü, Z. Xiu, S. Wang, G. Zhou, Y. Zhou, S. Wang, Z. Qiu and A. Zhang, “Synthesis and photoluminescence properties of a new red emitting phosphor: Ca3(VO4)2:Eu3+;Mn2+,“ Mater. Res. Bull., 42, 1145-1152 (2007)
[34] V.D. Zhuravlev, A.A. Fotiev and B.V. Shulgin, “Thermal and luminescent properties of samples of the systems Ca3(VO4)2 - M3(VO4)2, where M equals Sr, Ba.,” Izv. Akad. Nauk SSSR Neorg. Mater., 15, No. 11, 2003-2006 (1979)
[35] P.R. Biju, G. Jose, V. Thomas, V.P.N. Nampoori and N.V. Unnikrishnan, “Energy transfer in Sm3+:Eu3+ system in zinc sodium phosphate glasses,” Opt. Mater., 24, 671-677 (2004)
[36] G.H. Lee, T.H. Kim, C. Yoon and S. Kang, “Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDS,” J. Lumin., 128, 1922-1926 (2008)
[37] R. Reisfeld and L. Boehm, “Energy transfer between Samarium and Europium in phosphate glasses,” J. Solid State Chem., 4, 417-424 (1972)
[38] Y. Yu, Y. Liu and M. Song, “Luminescence and energy transfer in GdP5O14:Eu3+,Sm3+ single crystals,” J. Alloys Compd., 202, 47-50 (1993)
[39] T. Trupke, M.A. Green and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., 92, No. 3, 1668-1674 (2002)
[40] P. Chung, H.H. Chung and P.H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol., A 25, No. 1, 61-66 (2007)
[41] V. Jubera, A. Garcia, J.P. Chaminade, F. Guillen, J. Sablayrolles and C. Fouassier, “Yb3+ and Yb3+-Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin., 124, 10-14 (2007)
[42] B. Valeur, Molecular Fluorescence: Principles and Applications, WILEY-VCH Verlag GmbH, Weinheim (2002)
[43] J. García Solé, L.E. Bausá and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, Ltd, Spain (2005)
[44] A. Beiser, Concepts of Modern Physics, Sixth Edition, The McGraw-Hill Companies, Inc., New York (2003)
[45] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York (1968)
[46] Jey-Jau Lee, The Application on Material Crystallography, summer school in National Synchrotron Radiation Research Center (NSRRC), Taiwan, pp. 9-22 (2006)
[47] INSTRUCTION MANUAL, HITACHI F-7000 FLUORESCENCE SPECTROPHOTOMETER (MAINTENANCE MANUAL), Hitachi High-Technologies Corporation, 2nd Edition (2006)
[48] You-Ming Chuang, Master Thesis: The syntheses and optical investigations of molybdate-based and nano-scaled strontium barium niobate powders, Department of Electrical Engineering, National Cheng Kung University, Taiwan (2008)
[49] http://en.wikipedia.org/wiki/CIE_1931_color_space (a website)
[50] W. T. Carnall, P. R. Fields and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys., 49, No. 10, 4450-4455 (1968)
[51] G. Li, Z. Wang, M. Yu, Z Quan and J. Lin, “Fabrication and optical properties of core–shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol–gel process,“ J. Solid State Chem., 179, 2698-2706 (2006)
[52] B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford, pp. 146-182 (1989)
[53] G. Tang, J. Zhu, Y. Zhu and C. Bai, “The study on properties of Eu3+-doped fluorogallate glasses,“ J. Alloys Compd., 453, 487-492 (2008)
[54] P. Maestro, D. Huguenin, A. Seigneurin, F. Deneuve, P. Le Lann and J. F. Berar, “Mixed rare earth oxides as stating material for the preparation of Y2O3:Eu lamp phosphor: Characterization and use,” J. Electrochem. Soc., 139, No. 5, 1479-1482 (1992)
[55] M. Gaft, R. Reisfeld and G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials, Springer-Verlag, Berlin Heidelberg, p. 145 (2005)
[56] H.M. Yang, J.X. Shi, H.B. Liang and M.L. Gong, “A novel green emitting phosphor Ca2GeO4:Tb3+,” Mater. Res. Bull., 41, 867-872 (2006)
[57] F. A. Kröger and H. J. Vink, Solid State Physics, Vol. 3, edited by F. Seitz and D. Turnbull, Academic Press, New York, pp. 307-435 (1956)
[58] B.C. Joshi, “Enhanced Eu3+ emission by non-radiative energy transfer from Tb3+ in zinc phosphate glass,” J. Non. Cryst. Solids, 180, 217- 220 (1995)
[59] R. Reisfeld, N. Lieblich, L. Boehm and B. Barnett, “Energy transfer between Bi3+→Eu3+, Bi3+→Sm3+ and UO22+→Eu3+ in oxide glasses,” J. Lumin., 12-13, 749-753 (1976)
[60] R. Reisfeld and L. Boehm, “Energy transfer between samarium and europium in phosphate glasses,” J. Solid State Chem. 4, 417-424 (1972)
[61] B. Yan and X.Q. Su, “LuVO4:RE3+ (RE = Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors,” Opt. Mater., 29, 547-551 (2007)
[62] Y.C. Li, Y.H. Chang, Y.F. Lin, Y.S. Chang and Y.J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd., 439, 367-375 (2007)
[63] P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan and M.K.R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids, 64, 841-846 (2003)
[64] J.C. Joshi, B.C. Joshi, N.C. Pandey, R. Belwal and J. Joshi, “Nonradiative energy transfer from Tb3+→Er3+ in calibo glass,” J. Solid State Chem., 22, 439-443 (1977)
[65] G. A. Kumar, P.R. Biju, G. Jose and N.V. Unnikrishnan, “Static energy transfer for Mn2+ : Pr3+ system in phosphate glasses,” Mater. Chem. Phys., 60, 247-255 (1999)
[66] B.C. Joshi, R. Lohani and B. Pande, “Energy transfer between optically excited Dy3+ and Er3+ ions in zinc phosphate glass,” Ind. J. Pure Appl. Phys., 39, 443-446 (2001)
[67] B.C. Joshi and R. Lohani, “Non-radiative energy transfer from Dy3+ to Ho3+ in zinc phosphate glass,” J. Non. Cryst. Solids, 189, 242-245 (1995)
[68] B.C. Joshi and R. Lohani, “Non-radiative energy transfer from Tm3+ to Ho3+ and Nd3+ in zinc phosphate glass,” J. Non. Cryst. Solids, 215, 103-107 (1997)
[69] B.C. Joshi, R. Lohani and B. Pande, “Sensitizing Sm3+ emission by non-radiative energy transfer from UO2++ in zinc phosphate glass,” J. Non. Cryst. Solids, 337, 97–99 (2004)
[70] G. Ajithkumar, P.K. Gupta, G. Jose and N.V. Unnikrishnan, “Judd-Ofelt intensity parameters and laser analysis of Pr3+ doped phosphate glasses sensitized by Mn2+ ions,” J. Non. Cryst. Solids, 275, 93-106 (2000)
[71] R. Reisfeld and N. Lieblich-soffer, “Energy transfer from UO22+ to Sm3+ in phosphate Glass,” J. Solid State Chem., 28, 391-395 (1979)
[72] W.J. Yang, L. Luo, T.M. Chen and N.S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater., 17, 3883-3888 (2005)
[73] C.K. Chang and T.M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7 : Eu, Mn through energy transfer,” Appl. Phys. Lett., 90, 161901(1-3) (2007)
[74] H. Jiao, F. Liao, S. Tian and X. Jing, “Luminescent properties of Eu3+ and Tb3+ activated Zn3Ta2O8,” J. Electrochem. Soc., 150, H220-H224 (2003)
[75] D.L. Dexter and J.H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys., 22, No. 6, 1063-1070 (1954)
[76] S. Ye, Z.S. Liu, J.G. Wang and X.P. Jing, “Luminescent properties of Sr2P2O7:Eu,Mn phosphor under near UV excitation,” Mater. Res. Bull., 43, 1057–1065 (2008)
[77] C. Hsu and R.C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin., 10, 273-293 (1975)