簡易檢索 / 詳目顯示

研究生: 劉芮君
Liu, Rui-Jun
論文名稱: 葡萄籽萃取物對細菌生長及葉酸參與之單碳循環的影響
The impact of grape seed extract on the growth of bacteria and folate-mediated one-carbon metabolism
指導教授: 傅子芳
Fu, Tzu-Fun
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: 葡萄籽萃取物細菌葉酸單碳循環
外文關鍵詞: grape seed extract, bacteria, folate, one-carbon metabolism
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葡萄籽萃取物(Grape seed extract)富含多種維生素和類黃酮,已被證實具有多種有益的生物活性,如抗氧化、抗菌及抗發炎作用。 葡萄籽萃取物被認為是一種重要的營養食品,已被大量生產以做食用。在實驗室之前的研究中發現,葡萄籽萃取物透過抑制二氫葉酸還原酶(一種對核苷酸生物合成和蛋白質代謝至關重要的葉酸代謝酶且是許多抗生素的常見靶標)來抑制金黃色葡萄球菌的生長。然而,尚不清楚服用葡萄籽萃取物是否會抑制益生菌的生長並影響腸道微生物群。在本研究中,我們研究了葡萄籽萃取物對具有臨床意義的細菌生長的影響,特別是耐甲氧西林金黃色葡萄球菌(Methicillin-resistant Staphylococcus aureus, MRSA)和胚芽乳酸桿菌(Lactobacillus plantarum)。 MRSA是一種常見的病原體,易導致皮膚感染且因其抗藥性使得治療上有困難。胚芽乳酸桿菌則是常用以製作許多發酵食品和益生菌補充劑中的重要益生菌。我們觀察到葡萄籽萃取物對於金黃色葡萄球菌,MRSA和胚芽乳酸桿菌的生長抑制有明顯差異。總葉酸含量分析顯示,在三種實驗的細菌中,胚芽乳酸桿菌含有最低的總葉酸含量。高效液相色譜分析單一葉酸的含量發現,在葡萄籽萃取物存在下,四氫葉酸(Tetrahydrofolate一種主要葉酸衍生物)在金黃色葡萄球菌和MRSA中的含量顯著降低,在胚芽乳酸桿菌中則消失。利用資料庫分析及比較三種細菌參與之單碳循環的酵素,發現了單碳循環中葉酸酶組成有些差異,這可能是導致金黃色葡萄球菌和胚芽乳酸桿菌對於葡萄籽萃取物介導的不同抗菌作用。為了評估葡萄籽萃取物對於體內腸道微生物群中的影響,開始嘗試通過口服灌食法在成年斑馬魚中建立胚芽乳酸桿菌的生長,並且獲得了令人鼓舞的初步數據。我們得出結論,葡萄籽萃取物雖然在先前的研究被認為是殺菌的,但並未影響胚芽乳酸桿菌的生長。此外,斑馬魚有極大潛力成為研究腸道微生物群的動物模式。

    Grape seed extract (GSE) is enriched of numerous vitamins and flavonoids, possessing multiple beneficial bioactivities such as anti-oxidant, anti-bacteria and anti-inflammation. GSE has been considered an important nutritional supplement and consumed by general publics in large quantity daily. We had shown in our previous studies that GSE inhibited the growth of Staphylococcus aureus by inhibiting dihydrofolate reductase, a folate enzyme crucial to nucleotides biosynthesis and protein metabolism, as well as a common drug target of many antibiotics. However, it remains unclear whether taking GSE will inhibit the growth of probiotics and affect gut microbiota. In this study, we investigated the impact of GSE to the growth of bacteria with clinical significance, specifically Methicillin-resistant Staphylococcus aureus (MRSA) and Lactobacillus plantarum. MRSA is a common pathogen causing skin infection and difficult to treat due to its drug resistance. L. plantarum is an important probiotic found in many fermented food product and probiotic supplement. We observed apparent difference in the growth inhibition mediated by GSE and anti-folate reagents among S. aureus, MRSA and L. plantarum. Total folate content analysis revealed that L. plantarum has the lowest content of total folate among the three examined bacteria strains. HPLC analysis on individual folate showed that the content of tetrahydrofolate (THF), one major folate derivative in S. aureus and MRSA but lacking in L. plantarum, was significantly decreased in the presence of GSE. The folate-mediated one-carbon metabolic pathways and the enzymes involved in these three studied bacteria were analyzed and compared in Silico. Several differences in the components of folate enzymes in one-carbon metabolism were identified, which might contribute to the different antibacterial effects mediated by GSE between S. aureus and L. plantarum. To evaluate the impact of GSE in gut microbiota in vivo, the attempt to establish the growth of L. plantarum in adult zebrafish by oral gavaging was initiated and encouraging preliminary data were obtained. We conclude that GSE, although considered bactericidal, did not affect the growth in L. plantarum. In addition, there is potential to use zebrafish as in vivo model for studying gut microbiota.

    Table of Contents 中文摘要 I Abstract II Acknowledgements III Table of Contents IV Figures VI Abbreviations VII I. Introduction 1 1 Folate 1 2 Structure of folate 1 3 Folate in bacteria 3 4 Grape seed extract 3 5 Lactobacillus plantarum 4 6 Zebrafish 5 7 Gastrointestinal tract of zebrafish 5 8 Research about probiotic with zebrafish 6 II. Rationale and Specific Aims 7 III. Materials and Methods 8 1. Materials 8 2. Fish lines and maintenance 8 3. Bacterial strain 8 4. Folate extraction and folate content analysis 9 5. Disk diffusion antifolate sensitivity test 10 6. Bacteria growth curve analysis 10 7. Zebrafish embryo toxicity test 10 8. Infection of zebrafish with L. plantarum 10 9. Bacterial DNA extraction and PCR analysis 11 10. Statistical analysis 11 IV. Results 12 1. Inhibition effect of GSE on Staphylococcus aureus and MRSA 12 2. Different antibacterial effect of GSE on different gut bacteria 12 3. The growth of L. plantarum was not affected by GSE and L. plantarum may produce folate 13 4. GSE influenced the folate metabolism in L. plantarum 13 5. GSE changed the folate composition in bacteria 14 6. Folate synthesis in Silico: L. plantarum are unable to produce folate in the absence of pABA 14 7. One-carbon metabolism in Silico 15 8. DHFR structure of L. plantarum ATCC 14917 is similar to S. aureus 15 9. L. plantarum can secrete folate in to the culture medium 16 10. Additional acetate induced the folate content in L. plantarum 16 11. Embryo toxicity test 16 12. L. plantarum infection model with adult zebrafish 17 V. Conclusion 18 VI. Discussion 19 VII. Reference 22 VIII. Figures 26 Figures Figure 1. The antimicrobial effect of GSE on S. aureus and MRSA. 26 Figure 2. Antibacterial effect of GSE on different gut bacteria 27 Figure 3. Different inhibition effect of antifolate or folic acid on E.coli, S. aureus, and L. plantarum 28 Figure 4.The impact of GSE on the total folate content in E. coli, S. aureus, and L. plantarum 29 Figure 5. Folate composition in bacteria 30 Figure 6. General de novo biosynthetic pathway of folate with indication of the enzyme present in L. plantarum WCFS1 according to KEGG 31 Figure 7. One-carbon metabolism pathway with indication of the enzyme present in (A) L. plantarum WCFS1 and (B) S. aureus according to KEGG 32 Figure 8. Prediction of L. plantarum dihydrofolate reductase structure and compared with DHFR of S. aureus. 33 Figure 9. Secretion of folate into medium and additional acetate in medium change the folate content in L. plantarum 34 Figure 10. Toxicity text of GSE on zebrafish embryo 35 Figure 11. Oral gavaging wild-type adult zebrafish with L. plantarum 36

    1. Rossi, M., A. Amaretti, and S. Raimondi, Folate production by probiotic bacteria. Nutrients, 2011. 3(1): p. 118-34.
    2. J. METZ, Folates in megaloblastic anaemia.pdf. Bulletin of the World Health Organization, 1963. 28(4): p. 517–529.
    3. Czeizel, A.E., et al., Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients, 2013. 5(11): p. 4760-75.
    4. in Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. 2012: Geneva.
    5. Saubade, F., et al., Lactic acid fermentation as a tool for increasing the folate content of foods. Crit Rev Food Sci Nutr, 2017. 57(18): p. 3894-3910.
    6. Raz, S., M. Stark, and Y.G. Assaraf, Folylpoly-gamma-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat, 2016. 28: p. 43-64.
    7. Tjong, E. and S.S. Mohiuddin, Biochemistry, Tetrahydrofolate, in StatPearls. 2019: Treasure Island (FL).
    8. Burman, L.G., The antimicrobial activities of trimethoprim and sulfonamides. Scand J Infect Dis, 1986. 18(1): p. 3-13.
    9. Pompei, A., et al., Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol, 2007. 73(1): p. 179-85.
    10. Asrar, F.M. and D.L. O'Connor, Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem, 2005. 16(10): p. 587-93.
    11. Nassiri-Asl, M. and H. Hosseinzadeh, Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res, 2016. 30(9): p. 1392-403.
    12. Goodrich, K.M., et al., Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutr Res, 2012. 32(10): p. 787-94.
    13. Liu, W., et al., Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol Nutr Food Res, 2017. 61(9).
    14. Navarro-Martinez, M.D., et al., Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrob Agents Chemother, 2005. 49(7): p. 2914-20.
    15. Kao, T.T., et al., Grape seed extract inhibits the growth and pathogenicity of Staphylococcus aureus by interfering with dihydrofolate reductase activity and folate-mediated one-carbon metabolism. Int J Food Microbiol, 2010. 141(1-2): p. 17-27.
    16. Ouwehand, A.C., et al., Prebiotics and other microbial substrates for gut functionality. Curr Opin Biotechnol, 2005. 16(2): p. 212-7.
    17. Niedzielin, K., H. Kordecki, and B. Birkenfeld, A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol, 2001. 13(10): p. 1143-7.
    18. Li, P., Q. Zhou, and Q. Gu, Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins. J Biotechnol, 2016. 234: p. 66-70.
    19. Park, S.Y., et al., Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood. Korean J Food Sci Anim Resour, 2014. 34(1): p. 106-14.
    20. Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
    21. Brugman, S., The zebrafish as a model to study intestinal inflammation. Dev Comp Immunol, 2016. 64: p. 82-92.
    22. Nalbant P., et al., Functional characterization of a Na+–phosphate cotransporter (NaPi‐II) from zebrafish and identification of related transcripts. The Journal of Physiology, 1999. 520(1): P. 79-89.
    23. Wallace, K.N., et al., Intestinal growth and differentiation in zebrafish. Mech Dev, 2005. 122(2): p. 157-73.
    24. Wallace, K.N. and M. Pack, Unique and conserved aspects of gut development in zebrafish. Dev Biol, 2003. 255(1): p. 12-29.
    25. Melancon, E., et al., Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol, 2017. 138: p. 61-100.
    26. Zhang, R., et al., Short-term propamocarb exposure induces hepatic metabolism disorder associated with gut microbiota dysbiosis in adult male zebrafish. Acta Biochim Biophys Sin (Shanghai), 2019. 51(1): p. 88-96.
    27. Wang, X., et al., Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol, 2019. 216: p. 19-28.
    28. Okazaki, F., et al., Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Sci Rep, 2019. 9(1): p. 867.
    29. Geiger, B.M., et al., Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One, 2013. 8(12): p. e83194.
    30. Brugman, S., et al., Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. Gastroenterology, 2009. 137(5): p. 1757-67 e1.
    31. He, Q., et al., Role of gut microbiota in a zebrafish model with chemically induced enterocolitis involving toll-like receptor signaling pathways. Zebrafish, 2014. 11(3): p. 255-64.
    32. Toh, M.C., et al., Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract. Zebrafish, 2013. 10(2): p. 194-8.
    33. Valenzuela, M.J., et al., Evaluating the Capacity of Human Gut Microorganisms to Colonize the Zebrafish Larvae (Danio rerio). Front Microbiol, 2018. 9: p. 1032.
    34. Borrelli, L., et al., Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep, 2016. 6: p. 30046.
    35. Collymore, C., S. Rasmussen, and R.J. Tolwani, Gavaging adult zebrafish. J Vis Exp, 2013(78).
    36. Davis, D.J., et al., Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci Rep, 2016. 6: p. 33726.
    37. Jin, Y.J., et al., New insight and metrics to understand the ontogeny and succession of Lactobacillus plantarum subsp. plantarum and Lactobacillus plantarum subsp. argentoratensis. Sci Rep, 2018. 8(1): p. 6029.
    38. Al-Habib, A., et al., Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J Toxicol Sci, 2010. 35(3): p. 357-64.
    39. LeBlanc, J.G., et al., B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J Appl Microbiol, 2011. 111(6): p. 1297-309.
    40. Sybesma, W., et al., Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol, 2003. 69(8): p. 4542-8.
    41. Iyer, R. and S.K. Tomar, Dietary effect of folate-rich fermented milk produced by Streptococcus thermophilus strains on hemoglobin level. Nutrition, 2011. 27(10): p. 994-7.
    42. D'Aimmo, M.R., et al., Biosynthesis and cellular content of folate in bifidobacteria across host species with different diets. Anaerobe, 2014. 30: p. 169-77.
    43. D'Aimmo, M.R., et al., The potential of bifidobacteria as a source of natural folate. J Appl Microbiol, 2012. 112(5): p. 975-84.
    44. Aufreiter, S., et al., Folate is absorbed across the colon of adults: evidence from cecal infusion of (13)C-labeled [6S]-5-formyltetrahydrofolic acid. Am J Clin Nutr, 2009. 90(1): p. 116-23.
    45. Lakoff, A., et al., Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate. Am J Clin Nutr, 2014. 100(5): p. 1278-86.
    46. Badavi, M., et al., Effect of Grape Seed Extract on Lead Induced Hypertension and Heart Rate in Rat. Pakistan Journal of Biological Sciences, 2008. 11(6): p. 882-887.
    47. Charradi, K., et al., Grape seed extract alleviates high-fat diet-induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovasc Toxicol, 2011. 11(1): p. 28-37.
    48. Mokni, M., et al., Grape seed and skin extract protects against acute chemotherapy toxicity induced by doxorubicin in rat heart. Cardiovasc Toxicol, 2012. 12(2): p. 158-65.
    49. Ammar el, S.M., et al., Cardioprotective effect of grape-seed proanthocyanidins on doxorubicin-induced cardiac toxicity in rats. Pharm Biol, 2013. 51(3): p. 339-44.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE