簡易檢索 / 詳目顯示

研究生: 林琨達
Lin, Kun-Ta
論文名稱: 以數值模擬評估地熱潛能與溫泉資源變動趨勢-以四重溪地區為例
Numerical modeling of geothermal potential and hot spring resources in Szu-Chung-Chi Area
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 數值模擬TOUGH2四重溪溫泉資源
外文關鍵詞: Numerical simulation, TOUGH2, Szu-Chung-Chi hot spring resources
相關次數: 點閱:100下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位在歐亞大陸板塊與菲律賓海板塊交界,島上蘊含豐富的溫泉地熱資源,為台灣重要的觀光遊憩產業,然而在長期人為開發影響下,溫泉資源之變動及其未來之趨勢,則成為溫泉產業發展管理之重要依據。本研究以數值模式進行台灣四重溪研究區地熱潛能與溫泉資源變動趨勢預估,依據搜集之研究區域水文地質資料,以數值軟體TOUGH2建立四重溪溫泉地區概念模型,模擬水流與熱流傳輸之情形,並由現地水位以及監測井溫度剖面模資料,藉由率定過程反算深層循環熱水注入值,結果指出四重溪地區地下熱流主要透過高透水性之大梅斷層破碎帶向上湧升,深循環水量約為每年31.5萬噸,溫度為77.7 °C,深循環水帶入熱焓為每年1.03×10^14焦耳。熱通量越高的區域,表示其從地球內部來的熱量越高,地溫梯度也越高,經由模擬輸出結果計算之區域熱通量為110.1 mW/m^2,約為全球平均地殼熱通量63 mW/m^2之1.75倍。
    由於四重溪溫泉地區在長期開發下,區域地下水位已明顯發生洩降情況,故本研究所建立之數值模型以自然狀態模型為基礎進行初步率定,並考量人為開發情況下對研究區造成之影響,與監測資料擬合得現地之暫態模型,最後於模式中加入氣象資料與生產行為進行模擬,並由假設案例探討氣候變化對於本區水位變化之影響,持續豐枯水年補注差異由結果計算兩情況於預測模擬後第5年全年平均水位最大差異可達9.03公尺,可推斷溫泉區之補注量也會造成溫泉可用水量之變動。同時本研究藉由數值模擬探討溫泉生產減抽方案對區域水位回升之影響,由結果可知,在不同抽水量降低案例中,地下水位可呈現逐年回升,不同方案所獲得之成果,將可供本區溫泉資源之管理做為參考。

    The purpose of this research is to estimate the geothermal potential and hot spring resources in Szu-Chung-Chi area. A three-dimensional conceptual model has been developed based on the site information including lithological characters, hydrogeological data, etc. Then the simulator, TOUGH2, had been carried out to construct a comprehensive hydrothermal model of the study area. This model was calibrated by recharge rate and material hydrogeological parameters, as well as by monitoring groundwater level. In order to avoid the effect of artificial pumping, a natural-state model was obtained and be applied to evaluate the geothermal potential and determine reservoir properties. Results show that major heat flow flowed along the high-permeability fault zone. The quantity of hot deep circle water is 0.315 million tons and the enthalpy is 1.03×10^14 joule each year. Average heat flux over the entire study area is 110.1 mW/m^2. In second step, due to long-term exploitation, the water level in this area has been significantly decreased. So the natural state model was further calibrated by groundwater level during 2012-2014 to obtain the present state in site simulation. The final step of modelling was to predict the future state and the effect of reducing exploitation. In Scenario 1, two different kinds of recharge rates assumed to estimate groundwater level and results showed that groundwater recharge difference between wet year and dry year can affect the water table. In Scenario 2, reduced exploitation made water table rising and the result is benefit to hot spring management in research area.

    中英文摘要 I 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 前人文獻回顧 4 1.2.1 水流及熱流傳輸行為 4 1.2.2 地熱資源調查 6 1.2.3 地熱區數值模擬 8 1.3 研究方法與流程 11 第二章 理論模式 13 2.1 地下水流與熱傳相關理論 13 2.1.1 地下水流相關理論 13 2.1.2 熱傳相關理論 15 2.2 TOUGH2軟體簡介 21 第三章 研究區域概述 28 3.1 地理位置 28 3.2 氣象與水文 30 3.2.1 溫度 30 3.2.2 雨量 30 3.2.3 河川流量與補注分析 31 3.3 地質概況 35 3.3.1 岩性分類 35 3.3.2 地質構造與地熱特性 37 3.4 研究區域地溫推估 40 3.4.1 地質溫度計種類 40 3.4.2 地質溫度計應用 42 第四章 參數敏感性分析 44 4.1 敏感性分析模型建置 45 4.2 敏感性分析結果 46 4.2.1 密度 46 4.2.2 孔隙率 47 4.2.3 滲透率 48 4.2.4 熱傳導係數 50 4.2.5 比熱 51 4.3 敏感性分析結果討論 52 第五章 研究區域案例模擬 53 5.1 研究區域模型建置 53 5.1.1 模型範圍與邊界設定 53 5.1.2 模型網格分層與參數設定 55 5.2 研究案例模擬結果與討論 58 5.2.1 自然狀態模擬 59 5.2.2 暫態模擬與監測資料擬合 65 5.2.3 假設案例水位變動預測 71 第六章 結論與建議 77 6.1 結論 77 6.2 建議 79 參考文獻 80

    1. Adrian, B. (1993), “Heat transfer”, John Wiley & Sons, Inc., New York
    2. Axelsson, G., Flovenz, O. G., Hauksdottir, S., Hjartarson, A., and Jiurong Liu (2001), “Analysis of tracer test data, and injection-induced cooling, in the Laugaland geothermal field, N-Iceland”, Geothermics, 30, pp.697-725
    3. Bear, J. (1972), “Dynamics of fluid in porous media”, American Elsevier Pub. Co., New York
    4. Bedre, M. G., and Brian J. Anderson (2012), “Sensitivity Analysis of Low-Temperature Geothermal Reservoirs - Effect of Reservoir Parameters on the Direct Use of Geothermal Energy”, GRC Transactions, 36, pp.1255-1261
    5. Boussinesq, J. 1877. Essa sur latheories des eaux courantes. Memoires presentes par divers savants a l’Academic des Sciences de l’Institut national de France. Tome XXIII, no. 1.
    6. Bredehoeft, J. D., and Papaopulos, I.S. (1965), “Rates of vertical groundwater movement estimated from the Earth's thermal profile”, Water Resources Research, 1(2), pp.325-328
    7. Chandler, P. J., Jaque, F., and Townsend, P. D. (1979), “Ion beam induced luminescence in fluid silica”, Radiation Effects, 42, pp.45-53
    8. Cyrus W. Karingithi (2009), “Chemical geothermometers for geothermal explorating”, Presented at Short Course IV on Exploration for Geothermal Resources, Kenya, November 1-22
    9. Domenico, P. A., and Schwartz, F. W. (1990), “Physical and Chemical Hydrogeology”, Wiley, New York
    10. Foulger, G. (1982), “Geothermal exploration and reservoir monitoring using earthquakes and the passive seismic method”, Geothermics, 11(4), pp.259-268
    11. Fournier, R.O., and J.J. Rowe (1966), “Estimation of underground temperatures from the silica content of water from hot springs and wet stream wells”, American Journal of Science, 264, pp.685-697
    12. Fournier, R. O., and Truesdell, A. H. (1973), “An empirical Na-K-Ca geothermometer for natural waters. Geochim”, Cosmochim. Acta, 37, pp.1255-1275
    13. Fournier, R. O., and Truesdell, A. H. (1974), “Geochemical indicators of subsurface temperature. Part II. Estimation of temperature and fraction of hot water mixed with cold water”, J. Res. U.S. Geol. Survey, 2(3), pp.263-270
    14. Fournier, R. O. (1977), “Chemical geothermometers and mixing models for geothermal systems”, Geothermics, 5, pp.41-50
    15. Frind, E. O. (1982), “Simulation of long-term transient density-dependent transport in groundwater”, Adv. Water Resources, 5(2), pp.73-88
    16. Kiryukhin, A. V., and Vladimir A. Yampolsky (2004), “Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia”, Geothermics, 33, pp.421-442
    17. Kiryukhin, A. V., N. P. Asaulova, Yu. F. Manukhin, T. V. Rychkova, and V. M. Sugrobov (2010), “Using numerical modeling for assessing the recoverable reserves of a geothermal steam field - The Pauzhetka geothermal field”, Journal of Volcanology and Seismology, 4(1), pp.52-71
    18. McKenna, J. R., and David D. Blackwell (2004), “Numerical modeling of transient Basin and Range extensional geothermal systems”, Geothermics, 33, pp.457-476
    19. Nir, A., Doughty, C., and Tsang, C. F. (1992), “Validation of design procedure and performance modeling of a heat and fluid transport field experiment in the unsaturated zone”, Advances in Water Resources, 15(3), pp.153-166
    20. O’Sullivan, M. J., Karsten Pruess, and Marcelo J. Lippmann (2001), “State of the art of geothermal reservoir simulation”, Geothermics, 30, pp.395-429
    21. Papadopulos, S.S., and Larson, S.P. (1978), “Aquifer storage of heated water:Part II – Numerical simulation of field results", Ground Water, 16(4), pp.242-248
    22. Pearson, S. C. P., S. A. Alcaraz, and J. Barber (2014), “Numerical simulations to assess thermal potential at Tauranga low-temperature geothermal system, New Zealand”, Hydrogeology Journal, 22, pp.163-174
    23. Porras, E. A., Toshiaki Tanaka, Hikari Fujii, and Ryuichi Itoi (2007), “Numerical modeling of the Momotombo geothermal system, Nicaragua”, Geothermics, 36, pp.304-329
    24. Pruess, K., Curt Oldenburg, and George Moridis (1999), “TOUGH2 USER’S GUIDE, VERSION 2.0”, Earth Sciences Division, Lawrence Berkeley National Laboratory University of California, Berkeley, California 94720
    25. Swanberg, C. A., and P. Morgan (1979), “The linear relation between temperatures based on the silica content of groundwater and regional heat flow: A new heat flow map of the United States”, Pure Appl. Geophys., 117(1/2), pp.227-241
    26. Swanberg, C. A., and P. Morgan (1980) , “The silica heat flow interpretation technique: Assumptions and Applications”, Journal of geophysical research, 85(B12), pp.7206-7214
    27. Warner, Don. L., and Ugur. Algan (1984), “Thermal impact of residential ground-water heat pumps”, Ground water, 22(1), pp.6-12
    28. Yang, F. R., Lee, C. H., Kung, W. J., and Yeh, H. F. (2008), “The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan”
    29. Yoshida, K., Ayumu Shimizu, Sergei Fomin, and Toshiyuki Hashida (2003), “Computer simulation of fluid flow in fractured media: effect of thermal dispersion”, Proceedings of SPIE, 5127, pp.207-215
    30. 工業技術研究院能源與資源研究所 (1993),「礁溪溫泉區地球物理及鑽井探勘報告」,宜蘭縣政府
    31. 工業技術研究院能源與資源研究所 (2000),「臺灣溫泉水資源之調查及開發利用(1/4)」,經濟部水資源局
    32. 李和祥 (2005),「溫泉資源調查分析之研究-以四重溪與中崙溫泉為例」,國立成功大學資源工程學系碩士論文
    33. 李京霖 (2006),「陽明山馬槽地區溫泉資源調查分析之研究」,國立成功大學資源工程學系碩士論文
    34. 宋聖榮 (2003),「利用二氧化矽溫度計研究台灣地區熱流量變化(II)–台灣南部」
    35. 林士哲 (2003),「金崙地區溫泉資源調查分析之研究」,國立成功大學資源工程學系碩士論文
    36. 周家慧 (2009),「礁溪地區溫泉人工補注之研究」,國立成功大學資源工程學系碩士論文
    37. 高堂貴 (2002),「溫泉分佈調查方法與可行性之研究」,國立中興大學土木工程學系碩士論文
    38. 夏龍源、溫紹炳 (2004),「臺灣西南麓山地區溫泉資源調查與評估初步研究」,第一屆資源工程研討會,頁697-717
    39. 國立台灣大學 (2014),「含水層冷熱水交換與預警模式之研究」,經濟部水利署
    40. 張書維 (2011),「研習TOUGH2/iTOUGH模擬分析技術」,台灣電力公司
    41. 經濟部水利署 (2010),「四重溪溫泉地區基本資料調查暨改善規劃」,經濟部水利署
    42. 嘉南藥理大學 (2008),「南區溫泉監測系統站址規劃設計」,經濟部水利署
    43. 嘉南藥理大學 (2014),「103年度溫泉監測井網建置與觀測計畫」,經濟部水利署
    44. 郝春艷、劉紹文、王華玉、王良書 (2014),「全球大地熱流研究進展」,地質科學,49(3),頁754-770
    45. 郭瑋萍 (2008),「知本地區溫泉資源調查分析之研究」,國立成功大學資源工程學系碩士論文
    46. 陳文山、李偉彰、黃能偉、顔一勤、楊志成、楊小青、陳勇全、宋時驊 (2005),「恆春半島增積岩體的構造與地層特性:全新世恆春斷層的活動性」,西太平洋地質科學(Western Pacific Earth Science),第5卷,頁129-154
    47. 陳文福、陳尉平、李孫榮、張廣智 (2009),「溫泉生產井兼作水位及水量監測之可行性」,農業工程學報,第55卷第3期,頁53-64
    48. 陳昭旭、李振誥 (2001),「隧道湧水災害之水文地質調查及其防治處理措施」,地工技術雜誌,第87期,頁81-92
    49. 陳尉平、李振誥、甘其銓、萬孟瑋 (2010),「溫泉何處來」,科學發展,第454期,頁6-12
    50. 陸島工程顧問股份有限公司 (2004),「屏東縣政府九十二年度四重溪溫泉資源探測與調查案」,屏東縣政府

    下載圖示 校內:立即公開
    校外:2016-08-17公開
    QR CODE