簡易檢索 / 詳目顯示

研究生: 陳昭瑜
Chen, Chao-Yu
論文名稱: 以資料探勘方法預測群眾募資綠色專案之成敗
Success Prediction for crowdfunding green projects by data mining methods
指導教授: 施勵行
Shih, Li-Hshih
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 資料探勘永續群眾募資影響募資成功的因素主題模型集群分析決策樹
外文關鍵詞: Sustainable, crowdfunding, Latent Dirichlet Allocation, cluster analysis, decision tree
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 群眾募資是現在創新者籌募資金的管道,而募資專案的方向和目的會影響募資的成敗。本研究針對綠色創新的募資專案的成功與否進行研究,希望能藉由群眾募資平台上現有的資料,以資料探勘的方式建立這些資料與募資成功機率之間的決策樹模型,並預測模型的準確度。
    根據以往的文獻指出,影響募資成功的因素包括:募資專案類別、目標金額、募資天數、是否有宣傳影片或圖片、回饋方案、專案進度報告次數、提案者與投資者的互動次數、提案者過去的提案經驗、社群媒體分享次數、贊助人數等。
    本研究是以文字探勘中的主題模型來找出群眾募資專案描述之主中心思想與理念,並根據主題模型結果對應聯合國永續發展目標(SDGs),將群眾募資專案主題分為永續與非永續後,再將群眾募資專案以集群分析分為產品類別與服務類別,最後將數值資料與文字資料整合進行決策樹模型分析,找出群眾募資專案成功與否的規則,以及評估決策樹模型的預測能力。
    本研究希望透過資料探勘的方式了解永續或非永續、產品類別或服務類別之群眾募資專案之成功與否之規則,希望能幫助未來的提案者能藉由募資平台上所提供的資訊來判定募資專案成功的可能性。

    SUMMARY

    Since Financial crisis of 2008, due to small and medium enterprises to borrow is not easy, crowdfunding had become very popular to very popular between start-up companies and personal studio. Currently, regarding with sustainable issue all around the world, many international convention and policies had pass in The United Nations Conference on Environment and Development, such as The Sustainable Development Goals (SDGs), etc. No only to legislate, countries in the world also made effort to sustainable development. People in the world can not only abide by the law, but take actions on doing the right things, for instance, we can propose ideas on crowdfunding platform, and use the platform to raise funds.
    Therefore, in this study, we are going to use Latent Dirichlet Allocation (LDA) which is one of the method in text mining to find out the crowdfunding projects’ central idea, each of the central idea is one of the topic models. Base on the result of LDA topic modle we contrast with The Sustainable Development Goals (SDGs) of 17 global goals to devided the projects into sustainable and non-sustainable. Then we use cluster analysis to make the projects groups. Finaly, we combind the numerical data and text data and use CART decision tree model to find if-then rules and evaluate the result.

    Key words: Sustainable, crowdfunding, Latent Dirichlet Allocation, cluster analysis, decision tree

    目錄 中文摘要 I 誌謝 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究對象 3 1.4 研究流程 6 第二章 文獻探討 8 2.1 群眾募資 8 2.2 影響群眾募資的成功因素 10 2.3 永續概念之群眾募資 14 2.4 文字探勘方法 17 2.4.1主題模型 17 2.4.2 集群分析 18 2.4.3 決策樹 19 第三章 研究方法與文字探勘 22 3.1 研究架構 22 3.2 資料收集 23 3.3 資料整理 25 3.4 資料分析 26 3.4.1 文字資料分析 26 3.4.2 數值資料處理 47 第四章 決策樹模型建構與結果分析 49 4.1 決策樹模型 53 4.2 If-then規則 67 4.3 應用案例分析 70 第五章 結論 75 參考文獻 77 附錄 82 附錄一聯合國2030永續發展目標(SDGs) 82

    參考文獻
    網頁文獻
    1. 新媒體世代(2015),12個讓你在群眾募資平台成功的策略:新聞出版類提案者必看,最後瀏覽日期:106年4月20日,https://goo.gl/uCbx2x
    2. 中時電子報(2015) ,創業一點靈-群眾募資的5大行銷要訣,最後瀏覽日期:106年4月20日,https://goo.gl/d9pGQ7
    3. 張維仁(2015),群眾募資 搶攻千萬商機,最後瀏覽日期:106年4月20日,https://goo.gl/CjdW9E
    4. 維基百科,世界自然基金會,最後瀏覽日期:106年3月21,https://goo.gl/vWFn1f
    5. 陳文姿(2017),公民力量揭露污染 「透明足跡」計畫群眾募資上線,最後瀏覽日期:106年4月27日,https://goo.gl/d4VbRT
    6. 公益交流站(2014),用對的方式,講好的故事,打動你的捐款人──增進非營利組織募款效能的5個方法,最後瀏覽日期:106年4月24,https://goo.gl/Lx9hdq
    7. 群眾觀點(2016),群眾集資的經濟模式,能否帶領永續價值及環境科技的重新崛起?最後瀏覽日期:106年5月2日,https://goo.gl/Kp4Ab2
    8. flying V(2015),元沛農坊廚餘堆肥募資計畫-為台灣實現一個綠色永續的夢想,最後瀏覽日期:106年4月28日,https://goo.gl/DYbgQr
    9. Global crowdfunding market to reach USD 34.4 bln in 2015 report,最後瀏覽日期:106年5月13日,https://goo.gl/1tSidJ
    10. International journalist’s network(2013) IndieGoGo founder on raising money for journalism projects: 'People fund people, not just ideas',最後瀏覽日期:106年5月21日,https://goo.gl/escT96
    11. United Nations. 1987."Report of the World Commission on Environment and Development." General Assembly Resolution 42/187, 11 December 1987.最後瀏覽日期:106年5月13日

    中文文獻
    1. 林亭佑(2015)群眾募資專案成效之影響因素:台灣群眾募資平台flyingV之實證研究,碩士論文,國立臺灣大學,台北
    2. 林宇恆(2016)決策樹結合複迴歸模型預測氣溫與雨量,碩士論文,國立臺灣師範大學,台北
    3. 呂洝都(2011)應用資料探勘於淋巴癌病人存活預測之模式,碩士論文,國立中正大學,嘉義
    4. 金管會(2016)英美群眾募資平台之研究
    5. 財團法人資訊工業策進會產業情報研究所(2015)台灣群眾幕資平台發展現況,Advisory & Intelligence Service Program,產業研究報告
    6. 財團法人台灣經濟研究院(2016)全球早期資金趨勢觀測季報,105年度中小企業價值創新應用計畫
    7. 洪崇洋(2012)以LDA和使用紀錄為基礎的線上電子書主題趨勢發掘方法,碩士論文,國立中山大學,高雄
    8. 陳加樺(2014)金融創新成功因素之研究-以台灣群眾募資平台Flying V為例,碩士論文,東吳大學,台北
    9. 彭文正(2001)資料採礦顧客關係管理暨電子行銷應用
    10. 黃士軒(2007)交叉路口雙車事故分析,碩士論文,國立交通大學,新竹
    11. 黃原博(2010)應用資料探勘技術於慢性腎臟病之預測,碩士論文,國立臺東大學,台東
    12. 黃丹、許秀英 、郭建良(2014)從提案觀點探討影響文創類專案於群眾募資成功的關鍵要素,碩士論文,閩江學院海峽學院,福建省
    13. 程凱(2016)影響群眾募資成功可能性的因素,碩士論文,國立臺灣師範大學,台北
    14. 資料採礦—顧客關係管理暨電子行銷之應用,數博網資訊股份有限公司,頁數261-279
    15. 溫志皓等(2015)資料探攤應用於提升緝私執法品質之研究,碩士論文,中央警察大學,桃園
    16. 聯合國大會(2017)統計委員會涉及《2030年永續發展議程》
    17. 顏銘伯(2017) 應用主題模型提升電影推薦系統之績效,碩士論文,國立臺北大學,台北

    英文文獻
    1. Belleflamme, P., Lambert, T., and Schwienbacher, A. (2012) Crowdfunding: Tapping the right crowd. Journal of Business Venturing, vol.29, pp.585-609.
    2. Blei, D.M., Ng, A.Y., and Jordan, M.I. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, vol.3, pp.993-1022.
    3. Boeuf, B., Darveau, J., and Legoux, R. (2014) Financing Creativity: Crowdfunding as a New Approach for Theatre Projects. International Journal of Arts Management, vol.16, pp.33-48.
    4. Breiman, L., Friedman, J. H., Olshen R. A., and Stone C.J. (1984) Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. 1984. ISBN 978-0-412-04841-8.
    5. Pradhan C. (2016) What are the differences between ID3, C4.5 and CART? Quora. https://goo.gl/6xYAjC
    6. Colombo, M. G., Chiara, F., and Cristina, R.L. (2015) Internal social capital and the attraction of early contributions in crowdfunding. Entrepreneurship Theory and Practice, vol.39, pp.75-100.
    7. Drucker, P.F. (1990) The Management of Non-Profit Organization.
    8. Herzer, D., Nunnenkamp, P. (2013) Private Donations, Government Grants, Commercial Activities, and Fundraising: Cointegration and Causality for NGOs in International Development Cooperation. World Development, vol.46, pp. 234-251.
    9. Eszergár K.D., and Bálint, C. (2017) Definition of user groups applying Ward's method. Journal of Transportation Research Procedia, vol.22, pp.25-34.
    10. Gerber, E.M., Hui, J.S., Kuo, P.Y. (2012) Crowdfunding: Why People Are Motivated to Post and Fund Projects on Crowdfunding Platforms. Proceedings of the International Workshop on Design, Influence, and Social Technologies: Techniques, Impacts and Ethics, vol.2, pp.11-21.
    11. Hofmann, T. (1999) Probabilistic Latent Semantic Indexing. Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval, vol.22, pp. 1-8.
    12. Vachelard, J., Gambarra, S.T., Augustini, G., Riul, P., and Maracaja, C.V. (2016) A Guide to Scientific Crowdfunding. Public Library of Science, vol.14, pp.15-18.
    13. Kuppuswamy, V., and Bayus, B.L. (2013) Crowdfunding Creative Ideas: The Dynamics of Project Backers in Kickstarter. Available at SSRN: https://goo.gl/oszKxg.
    14. Lam, P.T.I., and Law, A.O.K. (2016) Crowdfunding for renewable and sustainable energy projects: An exploratory case study approach. Renewable and Sustainable Energy Reviews, vol.60, pp.11-20.
    15. Massolution Company (2014) Crowdsourcing.org 2015CF Crowdfunding Industry Report. Crowdsourcing and crowdfunding organization, ISBN-10: 1532727240.
    16. Milborrow, S. (2012), Plotting rpart trees with prp. http ://www.milbo.org/rpart-plot/prp.pdf.
    17. Mollick, E. (2014) The dynamics of crowdfunding: An exploratory study. Journal of Business Venturing, vol.29, pp.1-16.
    18. Pandey, P. and Singh, I. (2016) Improving Accuracy using different Data Mining Algorithms. International Journal of Computer Applications, vol.150, no.10.
    19. Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S. (1998) Latent Semantic Indexing: A probabilistic analysis (Postscript). Proceedings of ACM PODS.
    20. Rao, V. (2013) Introduction to Classification & Regression Trees (CART). Data Science Central. https://goo.gl/au3sSd
    21. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P. (2014) The CART decision tree for mining data streams. Information Sciences, vol.266, pp.1-15.
    22. Shouman, M., Turner, T., and Stocker, R. (2012) Integrating Naive Bayes and K-means clustering with different initial centroid selection methods in the diagnosis of heart disease patients. Computer Science & Information Technology, vol.8, pp. 125–137.
    23. Tomczak, A., and Brem, A. (2013) A conceptualized investment model of crowdfunding. Journal Venture Capital, vol.15, pp. 335-359.
    24. United Nations (1987) Report of the World Commission on Environment and Development. General Assembly Resolution, pp.42-187.
    25. Zuo, Y., Wu, J., Zhang, H., Lin, H., Wang, F., Xu1, K., Xiong, H. (2016) Topic Modeling of Short Texts: A Pseudo-Document View. Journal of KDD2016, vol.16, pp. 2105-2114.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE