| 研究生: |
羅翊豪 Lo, Yi-Hao |
|---|---|
| 論文名稱: |
以新穎複合式活性聚合法製備對稱三團鏈共聚物 Synthesis and Analysis of ABA Triblock Copolymers by Complex Living Free Radical Polymerization |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 陰離子聚合 、硫醇-己內醯胺 、活性自由基聚合 、雙起始劑 、團鏈共聚物 |
| 外文關鍵詞: | Diadduct, Anionic polymerization, Mercaptan/ε-caprolactam, Living free radical polymerization, Polyisoprene, Polystyrene Poly(methyl methacrylate), Block copolymer |
| 相關次數: | 點閱:201 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以陰離子聚合與硫醇-己內醯胺活性自由基聚合(Mercaptan/ε-caprolactam living polymerization, MLP)複合式系統製備功能性團鏈共聚物,並將雙邊鋰離子起始劑導入陰離子聚合中,建立ABA三嵌段對稱團鏈共聚物新穎製備法。從凝膠層析儀(GPC)和核磁共振光譜儀(NMR)鑑定結果證明1,3-Diisopropenyl benzene與t-BuLi可成功的合成雙邊鋰離子起始劑,再依序經由陰離子聚合與硫醇-己內醯胺活性自由基聚合複合系統可成功製備聚甲基丙烯酸甲酯(PMMA)-聚苯乙烯(PS)-聚甲基丙烯酸甲酯(PMMA)對稱三嵌段團鏈共聚物(MSM)。此三嵌段團鏈共聚物經GPC分析結果顯示,MSM的分子量隨反應時間的增加而增加、PDI則維持在1.4左右,符合活性聚合的反應特性。
另一方面,本研究導入軟質的聚異戊二烯取代MSM中間的聚苯乙烯鏈段,合成具有硬-軟-硬特性之PMMA-聚異戊二烯(PI)- PMMA對稱三嵌段團鏈共聚物(MIM)。藉由四氫呋喃(THF)做為極性調節劑控制PI的1,4加成與3,4加成比例,進而調整產物的性質。含有70%的1,4加成PI鏈段之Tg為-46.5℃;含有74%的3,4加成PI鏈段之Tg為-15.4℃;顯示不同結構的PI其橡膠彈性以及軟硬程度的不同。本研究進一步地發現,1,4-PI進行後續的MLP銜接MMA鏈段有較好的反應性和穩定性,轉化率可達80%;相對地,3,4-PI銜接MMA鏈段的轉化率只達69%。不同反應溶劑會影響反應轉化率,以二甲苯當作反應溶劑時,比甲苯反應溶劑可得到較高的轉化率,產物的溶解度較好。
此MIM產物經DSC分析結果顯示,1,4加成結構較高的PI原本有較低的Tg,接上PMMA後原本軟鏈段不受到PMMA硬鏈段的影響,兩者都保持原本的Tg;3,4結構較高之PI有較高之Tg,與PMMA共聚後原本軟鏈段受到硬鏈段的些微影響,造成低Tg上升一點,顯示3,4結構之PI與PMMA聚有較好的相容性,而1,4結構之PI與MMA有完整相分離,另由TEM電子顯微鏡的MIM切片分析照片也可明顯的觀察到三嵌段團鏈共聚合物的自組裝相分離結構。由上述結果顯示,本複合式活性聚合法成功的克服壓克力團鏈共聚合需極低溫聚合的缺點,為一具商業化應用潛力的新製程。
The thiol di-terminal homopolystyrene was synthesized by anionic polymerization by using t-BuLi/1,3-DIB as the diintiator and ethylene sufite as the termaination agent. Following, the thiol di-terminal homopolystyrene was further initated by living polymerization of methyl methacrylate (MMA) with initiator pair, di-terminal thiol group and caprolactam, to prepare triblock copolymers, poly(methyl methacrylate)m – block- (polystyrene)n- block- poly(methyl methacrylate)m With replacing styrene monomer by isoprene, the preparation of triblock copolymer could also proceed by the new initiator pair, and the poly(methyl methacrylate)m – block-(polyisoprene)n-block-poly(methyl methacrylate)m triblock copolymers (MIM) were successfully synthesized with this novel approach. The termination functionalization of poly(isopryl)lithium with thiiranes were characterized by 1H, 13C NMR spectroscopy, and MALDI-TOF mass spectrometry. The result of MALDI-TOF mass spectrometry indicates that reaction was seriously influenced by polar solvent, such as THF. The thiol terminal group did not obtain when THF was presented in reaction medium.
On the other hand, the different size chain and different configuration structures of thiol chain-end-functionalized polyisoprenes was synthesized and further react with equal weight of MMA in different apolar solvents. Lesser the molecular weight of thiol chain-end-functionalized polyisoprene was, faster the rate of reactions with methy metharylate was. Furthermore, 1,4-addition of polyisorene has better reactivity with MMA by using mercaptan/ε-caprolactam living polymerization than that of 3,4-addition. In addition, xylenes was more suitable to act as the solvent than toluene and benzene due to the differnet steric effect and polarity. Two glass transition temperature (Tg), including PMMA and PI domains, of MIM was presented on the curves of DSC measurement. The lower Tg is attributed from PI domain, which is not serious influenced by PMMA chain and vice versa, because the PMMA and PI domains are not missible. This result can be further proved by the phase separation diagram of AFM and TEM micrographs.
1. Liu C, Qin H, Mather PT. J Mater Chem. 2007;17(16):1543-58.
2. Gupta P, Vermani K, Garg S. Drug Discovery Today 2002;7(10):569-79.
3. Gao J, Li D, Wang D, Yang L. Eur Polym J. 2000;36(11):2517-22.
4. Szwarc M. Nature. 1956:2.
5. Szwarc M, Litt M. J Phys Chem. 1958;62(5):568-69.
6. Hirao A, Goseki R, Ishizone T. Macromolecules. 2014;47(6):1883-905.
7. Zhang W, Müller AHE. Prog Polym Sci. 2013;38(8):1121-62.
8. Zhang H, Alkayal N, Gnanou Y, Hadjichristidis N. Macromol Rapid Commun. 2014;35(4):378-90.
9. Lin Y, Zheng J, Yao K, Tan H, Zhang G, Gong J, et al. Polymer. 2015;59(0):252-59.
10. Macosko CW, Guégan P, Khandpur AK, Nakayama A, Marechal P, Inoue T. Macromolecules. 1996;29(17):5590-98.
11. Kim BJ, Bang J, Hawker CJ, Chiu JJ, Pine DJ, Jang SG, et al. Langmuir. 2007;23(25):12693-703.
12. Kim BJ, Bang J, Hawker CJ, Chiu JJ, Pine DJ, Jang SG, et al. Langmuir. 2007;23(25):12693-703.
13. Maeda R, Hayakawa T, Ober CK. Chem Mater. 2012;24(8):1454-61.
14. Bywater S. Prog Polym Sci. 1975;4(0):27-69.
15. Baskaran D, Müller AHE. Prog Polym Sci. 2007;32(2):173-219.
16. Glasse MD. Prog Polym Sci. 1983;9(2–3):133-95.
17. Dvoranek L, Vlcek P. Macromolecules. 1994;27(18):4881-85.
18. Baskaran D. Prog Polym Sci. 2003;28(4):521-81.
19. Cho Y-S, Lee J-S. Macromol Rapid Commun. 2001;22(8):638-42.
20. Ishizone T, Yoshimura K, Yanase E, Nakahama S. Macromolecules. 1999;32(3):955-57.
21. Stouffer JM, McCarthy TJ. Macromolecules. 1988;21(5):1204-08.
22. Braunecker WA, Matyjaszewski K. Prog Polym Sci. 2007;32(1):93-146.
23. Hardy CG, Zhang J, Yan Y, Ren L, Tang C. Prog Polym Sci. 2014;39(10):1742-96.
24. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Prog Polym Sci. 2006;31(12):1068-132.
25. Chen S, Binder WH. Polym Chem. 2015;6(3):448-58.
26. Beckwith ALJ, Bowry VW, O'Leary M, Moad G, Rizzardo E, Solomon DH. J Chem Soc, Chem Commun. 1986(13):1003-04.
27. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK. Macromolecules. 1993;26(11):2987-88.
28. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK, Saban M. Macromolecules. 1994;27(24):7228-29.
29. Saban MD, Georges MK, Veregin RPN, Hamer GK, Kazmaier PM. Macromolecules. 1995;28(20):7032-34.
30. Goto A, Fukuda T. Prog Polym Sci. 2004;29(4):329-85.
31. Hawker CJ, Elce E, Dao J, Volksen W, Russell TP, Barclay GG. Macromolecules. 1996;29(7):2686-88.
32. Wang J-S, Matyjaszewski K. Macromolecules. 1995;28(23):7901-10.
33. Wang J-S, Matyjaszewski K. Macromolecules. 1995;28(22):7572-73.
34. Wang J-S, Matyjaszewski K. J Am Chem Soc. 1995;117(20):5614-15.
35. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Macromolecules. 1995;28(5):1721-23.
36. Kotani Y, Kato M, Kamigaito M, Sawamoto M. Macromolecules. 1996;29(22):6979-82.
37. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Macromolecules. 1998;31(16):5559-62.
38. Hawthorne DG, Moad G, Rizzardo E, Thang SH. Macromolecules. 1999;32(16):5457-59.
39. Keddie DJ, Moad G, Rizzardo E, Thang SH. Macromolecules. 2012;45(13):5321-42.
40. Moad G, Rizzardo E, Thang SH. Polym Int. 2011;60(1):9-25.
41. Moad G, Rizzardo E, Thang SH. Polymer. 2008;49(5):1079-131.
42. Hu Y-H, Chen C-Y. J Polym Sci, Part A: Polym Chem. 2002;40(21):3692-702.
43. Hu Y-H, Chen C-Y, Wang C-C, Huang Y-H, Wang S-P. J Polym Sci, Part A: Polym Chem. 2004;42(19):4976-93.
44. Hu Y-H, Chen C-Y. Polym Degrad Stab. 2003;82(1):81-88.
45. Hu Y-H, Chen C-Y. Polym Degrad Stab. 2003;80(1):1-10.
46. Hu YH, Chen CY, Wang CC. Polym Degrad Stab. 2004;84(3):545-53.
47. Hu Y-H, Chen C-Y, Wang C-C. Polym Degrad Stab. 2004;84(3):505-14.
48. Whitesides GM, Grzbowski B, Science. 2002;295:2418.
49. Whitesides GM, Mathias JP, Seto CT, Science. 1991;254:1312.
50. Tanaka H, Hasegawa H, Hashimoto T, Macromolecules. 1991;24:240.
51. Tsitsilianis C, Staikos G, Macromolecules. 1992;25:910.
52. Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K, Macromolecules. 1995;28:8796.
53. Bang J, Kim SH, Drockenmuller E, Misner MJ, Russell TP, Hawker CJ, J. Am. Chem. Soc. 2006;126:7622.
54. Gong Y, Huang H, Hu Z, Chen Y, Chen D, Wang Z, He T, Macromolecules. 2006;39:3369.
55. Huang Y, Liu H, Hu Y, Macromol. Theory Simul. 2006;15:321.
56. Masuda J, Takano A, Suzuki J, Nagata Y, Noro A, Hayashida K, Matsushita Y, Macromolecules. 2007;40:4023.
57. Mochizuki K, Maeda Y, JP2004332166. 2004.
58. Yang L, Chen X, Jing X, Polym Degrad Stab. 2008;93:1923.
59. Yu JM,Dubois Ph, Teyssié R, Jérôme, Macromolecules. 1996;29(19):6090–6099.
60. Paik HJ, Gaynor SG, Matyjaszewski K, Macromo. Rapid Commun. 1998;19: 47.
61. Ukielski R, Wojcikiewicz H, Polish Pat. 1979;108:711.
62. Ukielski R, Stonecki J, Wojcikiewicz H, Ronstaniec Z, Kurek P, Kapelanski A, Mackow Z, Polish Pat. 1987;150;278.
63. Ukielski R, Stonecki J, Wojcikiewicz H, Ronstaniec Z, Kurek P, Kapelanski A, Mackow Z, Polish Pat.1988;151:320.
64. Ukielski R, Polimery. 1995;40:160-163.
65. Ukielski R, Polimery(Polish ed.). 1996;41:286-289.
66. Yu Y, Dubois Ph, Teyssié Ph, Jérôme R, Macromolecules. 1997; 30(15):4254–61.
67. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF, J. Chem. Phys. 1990;92:5677.
68. Xuan Y, Peng J, Cui L, Wang H, Li B, Han Y, Macromolecules. 2004;37:7301.
69. Elschenbroich C, Springer Verlag. 2009;44-5
70. Strohmann* C, Gessner V, Angew Chem Int Ed. 2007;46:4566-69
校內:2026-08-08公開