| 研究生: |
楊翔傑 Yang, Shiang-Jie |
|---|---|
| 論文名稱: |
探討腫瘤內極光激酶A在高度淋巴細胞浸潤之腫瘤微環境中於腫瘤進展之角色 Studying the role of tumor-intrinsic Aurora-A kinase in tumor progression in high lymphocyte infiltrated tumor microenvironment |
| 指導教授: |
洪良宜
Hung, Liang-Yi 賴明德 Lai, Ming-Derg |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 極光激酶A 、腫瘤微環境 、白細胞介素-16 、大腸直腸癌 |
| 外文關鍵詞: | Aurora-A kinase, tumor microenvironment, interleukin-16, colorectal cancer |
| 相關次數: | 點閱:77 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤微環境由多種不同細胞群組成,並且調控腫瘤進展。其中腫瘤微環境中的多種免疫抑制途徑會被活化,並透過抑制抗腫瘤免疫來促進腫瘤生長。因此,抑制這些免疫抑制途徑以增強抗腫瘤免疫,被視為一種具有潛力的癌症治療策略。極光激酶A為一種絲胺酸/蘇胺酸激酶,並在中心體功能、細胞有絲分裂和染色體穩定性方面扮演重要角色。在過往研究中發現,腫瘤中有較高極光激酶A表現的病患其預後較差。因此,在癌症的治療中使用極光激酶A抑制劑被認為是具有發展性的治療手段。然而,許多針對極光激酶A設計的小分抑制劑在臨床二期及三期的實驗中並未獲得成功。近年來有研究發現在不同癌症中抑制某些致癌蛋白也同時會抑制抗腫瘤免疫。然而,我們對腫瘤細胞內極光激酶A在腫瘤免疫中所扮演角色目前尚未了解透徹。在本研究中,我們發現在大腸直腸癌病患中,腫瘤內有較低淋巴細胞浸潤的情況下極光激酶A表達量較高則預後較差,相反的,在較高淋巴細胞浸潤的情況下極光激酶A達量較高則預後較好。此外,過去文獻報導小鼠大腸直腸癌細胞株CT26所形成腫瘤為高度免疫細胞浸潤之免疫熱腫瘤,且於CT26細胞內抑制極光激酶A表現,在免疫健全鼠中能夠過抑制CD8+ T 細胞的浸潤及毒殺能力來促進腫瘤生長。我們同時也發現極光激酶A能透過其激酶的活性在大腸直腸癌細胞中負調控白介素-16(IL-16)的表現。於極光激酶A被抑制的CT26腫瘤中,使用白細胞介素-16中和性抗體能透過促進CD8+ T 細胞的毒殺能力來制腫瘤生長。在此研究中,我們發現在免疫熱腫瘤中癌細胞內的極光激酶A能透過抑制白細胞介素-16的表現來促進抗腫瘤免疫。當腫瘤中免疫細胞浸潤多的狀況下,抑制的極光激酶A雖然能抑制癌細胞生長也抑制抗腫瘤免疫。因此,在腫瘤中有高度免疫浸潤的話,共同抑制極光激酶A以及白細胞介素-16會是更好的治療方式。
The tumor microenvironment (TME) comprises various cell populations that contribute to tumor progression, with several immunosuppressive pathways promoting tumor growth by inhibiting antitumor immunity. Targeting these pathways to enhance antitumor immunity is regarded as a potential cancer treatment strategy. Aurora-A kinase, a serine/threonine kinase essential for centrosome function, cell mitosis, and chromosome stability, is often overexpressed in cancers with poor prognosis. Despite its promising potential as a therapeutic target, inhibitors of Aurora-A kinase have shown limited success in clinical trials. Recent studies suggest that inhibiting certain oncoproteins might also diminish antitumor immunity. However, the role of tumor-intrinsic Aurora-A kinase in regulating tumor immunity in the TME is not fully understood. In this study, we found that colorectal cancer (CRC) patients with lower lymphocyte infiltration and higher Aurora-A expression in the tumors correlate with worse prognosis. In contrast, the CRC patients with higher lymphocyte infiltration and higher Aurora-A expression in the tumors correlate with better prognosis. Specifically, in the CT26 mouse tumor model, an immune-hot tumor type, Aurora-A knockdown promoted tumor growth by inhibiting CD8+ T cell infiltration and activity. In addition, we discovered that Aurora-A kinase negatively regulates interleukin-16 (IL-16) expression in CRC cells in a kinase-dependent manner. Neutralizing IL-16 reversed the tumor-promoting effects of Aurora-A knockdown in these models. Our findings indicate that inhibition of tumor-intrinsic Aurora-A can impair antitumor immunity by enhancing IL-16 production. Therefore, in tumors with high immune cell infiltration, Aurora-A inhibition may concurrently suppress cancer cell growth and reduce antitumor immunity. We propose that a combined approach, inhibiting both Aurora-A kinase and IL-16, could be a more effective therapeutic strategy in such tumors.
1 Sung, H., Ferlay, J., Siegel, R. L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71, 209-249, 2021.
2 Zaidi, S. H., Harrison, T. A., Phipps, A. I. et al. Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nat Commun. 11, 3644, 2020.
3 Yen, T., Stanich, P. P., Axell, L. et al. APC-Associated Polyposis Conditions. GeneReviews((R)). 1998.
4 Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487, 330-337, 2012.
5 Li, J., Chen, D. & Shen, M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front Med (Lausanne). 9, 869010, 2022.
6 Jarry, A., Gervois, N., Bossard, C. et al. Editorial: Crosstalk between innate and adaptive immunity in colorectal cancer: Implications for immunotherapy. Front Immunol. 13, 1129001, 2022.
7 Zhang, L., Li, Z., Skrzypczynska, K. M. et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell. 181, 442-459 e429, 2020.
8 Ghilas, S., O'Keefe, R., Mielke, L. A. et al. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol. 13, 944982, 2022.
9 Fionda, C., Scarno, G., Stabile, H. et al. NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. Int J Mol Sci. 23, 2022.
10 Ribeiro Franco, P. I., Rodrigues, A. P., de Menezes, L. B. et al. Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract. 216, 152729, 2020.
11 Hinshaw, D. C. & Shevde, L. A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 79, 4557-4566, 2019.
12 Takeuchi, Y. & Nishikawa, H. Roles of regulatory T cells in cancer immunity. Int Immunol. 28, 401-409, 2016.
13 Jenkins, S. J., Ruckerl, D., Cook, P. C. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 332, 1284-1288, 2011.
14 Majdalawieh, A. F., Hmaidan, R. & Carr, R. I. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol. 131, 268-275, 2010.
15 Ye, J., Su, X., Hsueh, E. C. et al. Human tumor-infiltrating Th17 cells have the capacity to differentiate into IFN-gamma+ and FOXP3+ T cells with potent suppressive function. Eur J Immunol. 41, 936-951, 2011.
16 Deaglio, S., Dwyer, K. M., Gao, W. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 204, 1257-1265, 2007.
17 Kryczek, I., Wei, S., Szeliga, W. et al. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood. 114, 357-359, 2009.
18 Martin-Orozco, N., Muranski, P., Chung, Y. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 31, 787-798, 2009.
19 Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9, 162-174, 2009.
20 Kumar, V., Patel, S., Tcyganov, E. et al. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 37, 208-220, 2016.
21 Kim, S. K. & Cho, S. W. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol. 13, 868695, 2022.
22 Saleh, R., Taha, R. Z., Toor, S. M. et al. Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother. 69, 1989-1999, 2020.
23 Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792, 2015.
24 Efthymiou, G., Saint, A., Ruff, M. et al. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol. 10, 641, 2020.
25 Zhang, Q. & Peng, C. Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett. 15, 691-698, 2018.
26 Murciano-Goroff, Y. R., Warner, A. B. & Wolchok, J. D. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 30, 507-519, 2020.
27 Hargadon, K. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 62, 29-39, 2018.
28 Haslam, A. & Prasad, V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw Open. 2, e192535, 2019.
29 Chen, E. X., Jonker, D. J., Loree, J. M. et al. Effect of Combined Immune Checkpoint Inhibition vs Best Supportive Care Alone in Patients With Advanced Colorectal Cancer: The Canadian Cancer Trials Group CO.26 Study. JAMA Oncol. 6, 831-838, 2020.
30 Marigo, I., Zilio, S., Desantis, G. et al. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell. 30, 377-390, 2016.
31 Panni, R. Z., Herndon, J. M., Zuo, C. et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med. 11, 2019.
32 Li, Y., Shen, Z., Chai, Z. et al. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut. 72, 2307-2320, 2023.
33 Wang, Y., Johnson, K. C. C., Gatti-Mays, M. E. et al. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 15, 118, 2022.
34 Zhai, J., Chen, H., Wong, C. C. et al. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology. 165, 445-462, 2023.
35 Hu-Lieskovan, S. & Ribas, A. New Combination Strategies Using Programmed Cell Death 1/Programmed Cell Death Ligand 1 Checkpoint Inhibitors as a Backbone. Cancer J. 23, 10-22, 2017.
36 Paijens, S. T., Vledder, A., de Bruyn, M. et al. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 18, 842-859, 2021.
37 Fu, Q., Chen, N., Ge, C. et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology. 8, 1593806, 2019.
38 Wang, Y., Lin, H. C., Huang, M. Y. et al. The Immunoscore system predicts prognosis after liver metastasectomy in colorectal cancer liver metastases. Cancer Immunol Immunother. 67, 435-444, 2018.
39 Geukes Foppen, M. H., Donia, M., Svane, I. M. et al. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol Oncol. 9, 1918-1935, 2015.
40 Mlecnik, B., Tosolini, M., Kirilovsky, A. et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 29, 610-618, 2011.
41 Pages, F., Mlecnik, B., Marliot, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 391, 2128-2139, 2018.
42 Tian, J., Chen, J. H., Chao, S. X. et al. Combined PD-1, BRAF and MEK inhibition in BRAF(V600E) colorectal cancer: a phase 2 trial. Nat Med. 29, 458-466, 2023.
43 Li, J., Dong, T., Wu, Z. et al. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov. 9, 103, 2023.
44 Labani-Motlagh, A., Ashja-Mahdavi, M. & Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front Immunol. 11, 940, 2020.
45 Li, H., Li, C. W., Li, X. et al. MET Inhibitors Promote Liver Tumor Evasion of the Immune Response by Stabilizing PDL1. Gastroenterology. 156, 1849-1861 e1813, 2019.
46 Sun, X., Li, C. W., Wang, W. J. et al. Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma. Am J Cancer Res. 10, 564-571, 2020.
47 Willems, E., Dedobbeleer, M., Digregorio, M. et al. The functional diversity of Aurora kinases: a comprehensive review. Cell Div. 13, 7, 2018.
48 Cammareri, P., Scopelliti, A., Todaro, M. et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res. 70, 4655-4665, 2010.
49 Belt, E. J., Brosens, R. P., Delis-van Diemen, P. M. et al. Cell cycle proteins predict recurrence in stage II and III colon cancer. Ann Surg Oncol. 19 Suppl 3, S682-692, 2012.
50 Katsha, A., Belkhiri, A., Goff, L. et al. Aurora kinase A in gastrointestinal cancers: time to target. Mol Cancer. 14, 106, 2015.
51 Bavetsias, V. & Linardopoulos, S. Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol. 5, 278, 2015.
52 D'Assoro, A. B., Haddad, T. & Galanis, E. Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front Oncol. 5, 295, 2015.
53 Dar, A. A., Belkhiri, A. & El-Rifai, W. The aurora kinase A regulates GSK-3beta in gastric cancer cells. Oncogene. 28, 866-875, 2009.
54 Katayama, H., Sasai, K., Kawai, H. et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 36, 55-62, 2004.
55 Wang-Bishop, L., Chen, Z., Gomaa, A. et al. Inhibition of AURKA Reduces Proliferation and Survival of Gastrointestinal Cancer Cells With Activated KRAS by Preventing Activation of RPS6KB1. Gastroenterology. 156, 662-675 e667, 2019.
56 Yin, T., Zhao, Z. B., Guo, J. et al. Aurora-A inhibition eliminates myeloid cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in breast cancer. Cancer Res. 2019.
57 Bustos-Moran, E., Blas-Rus, N., Alcaraz-Serna, A. et al. Aurora A controls CD8(+) T cell cytotoxic activity and antiviral response. Sci Rep. 9, 2211, 2019.
58 Center, D. M. & Cruikshank, W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol. 128, 2563-2568, 1982.
59 Bannert, N., Avots, A., Baier, M. et al. GA-binding protein factors, in concert with the coactivator CREB binding protein/p300, control the induction of the interleukin 16 promoter in T lymphocytes. Proc Natl Acad Sci U S A. 96, 1541-1546, 1999.
60 Zhang, Y., Center, D. M., Wu, D. M. et al. Processing and activation of pro-interleukin-16 by caspase-3. J Biol Chem. 273, 1144-1149, 1998.
61 Ren, F., Zhan, X., Martens, G. et al. Pro-IL-16 regulation in activated murine CD4+ lymphocytes. J Immunol. 174, 2738-2745, 2005.
62 Liu, Y., Cruikshank, W. W., O'Loughlin, T. et al. Identification of a CD4 domain required for interleukin-16 binding and lymphocyte activation. J Biol Chem. 274, 23387-23395, 1999.
63 Richmond, J., Tuzova, M., Cruikshank, W. et al. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J Cell Physiol. 229, 139-147, 2014.
64 McFadden, C., Morgan, R., Rahangdale, S. et al. Preferential migration of T regulatory cells induced by IL-16. J Immunol. 179, 6439-6445, 2007.
65 Li, C., Dai, J., Dong, G. et al. Interleukin-16 aggravates ovalbumin-induced allergic inflammation by enhancing Th2 and Th17 cytokine production in a mouse model. Immunology. 157, 257-267, 2019.
66 Jia, R., Liu, S., Xu, J. et al. IL16 deficiency enhances Th1 and cytotoxic T lymphocyte response against influenza A virus infection. Biosci Trends. 13, 516-522, 2020.
67 Kovacs, E. The serum levels of IL-12 and IL-16 in cancer patients. Relation to the tumour stage and previous therapy. Biomed Pharmacother. 55, 111-116, 2001.
68 Koike, M., Sekigawa, I., Okada, M. et al. Relationship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple myeloma: reference to IL-16. Leuk Res. 26, 705-711, 2002.
69 Azimzadeh, P., Romani, S., Mohebbi, S. R. et al. Interleukin-16 (IL-16) gene polymorphisms in Iranian patients with colorectal cancer. J Gastrointestin Liver Dis. 20, 371-376, 2011.
70 Kashfi, S. M., Behboudi Farahbakhsh, F., Nazemalhosseini Mojarad, E. et al. Interleukin-16 polymorphisms as new promising biomarkers for risk of gastric cancer. Tumour Biol. 37, 2119-2126, 2016.
71 Takeba, Y., Ohta, Y., Ootaki, M. et al. Identification of interleukin-16 production on tumor aggravation in hepatocellular carcinoma by a proteomics approach. Tumour Biol. 43, 309-325, 2021.
72 Milke, L., Schulz, K., Weigert, A. et al. Depletion of tristetraprolin in breast cancer cells increases interleukin-16 expression and promotes tumor infiltration with monocytes/macrophages. Carcinogenesis. 34, 850-857, 2013.
73 Donati, K., Sepult, C., Rocks, N. et al. Neutrophil-Derived Interleukin 16 in Premetastatic Lungs Promotes Breast Tumor Cell Seeding. Cancer Growth Metastasis. 10, 1179064417738513, 2017.
74 Lai, C. H., Huang, Y. C., Lee, J. C. et al. Translational upregulation of Aurora-A by hnRNP Q1 contributes to cell proliferation and tumorigenesis in colorectal cancer. Cell Death Dis. 8, e2555, 2017.
75 Marumoto, T., Hirota, T., Morisaki, T. et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells. 7, 1173-1182, 2002.
76 Mosely, S. I., Prime, J. E., Sainson, R. C. et al. Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery. Cancer Immunol Res. 5, 29-41, 2017.
77 Blank, C. U., Haining, W. N., Held, W. et al. Defining 'T cell exhaustion'. Nat Rev Immunol. 19, 665-674, 2019.
78 Ma, J., Zheng, B., Goswami, S. et al. PD1(Hi) CD8(+) T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer. 7, 331, 2019.
79 Sagiv-Barfi, I., Kohrt, H. E., Czerwinski, D. K. et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A. 112, E966-972, 2015.
80 Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15, 486-499, 2015.
81 Aktas, E., Kucuksezer, U. C., Bilgic, S. et al. Relationship between CD107a expression and cytotoxic activity. Cell Immunol. 254, 149-154, 2009.
82 Yin, T., Zhao, Z. B., Guo, J. et al. Aurora A Inhibition Eliminates Myeloid Cell-Mediated Immunosuppression and Enhances the Efficacy of Anti-PD-L1 Therapy in Breast Cancer. Cancer Res. 79, 3431-3444, 2019.
83 Cruikshank, W. W., Kornfeld, H. & Center, D. M. Interleukin-16. J Leukoc Biol. 67, 757-766, 2000.
84 Whately, K. M., Voronkova, M. A., Maskey, A. et al. Nuclear Aurora-A kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene. 40, 5651-5664, 2021.
85 Han, J., Jiang, Z., Wang, C. et al. Inhibition of Aurora-A Promotes CD8(+) T-Cell Infiltration by Mediating IL10 Production in Cancer Cells. Mol Cancer Res. 18, 1589-1602, 2020.
86 Wu, M. F., Wang, Y. C., Shen, T. C. et al. Significant Association of Interleukin-16 Genetic Variations to Taiwanese Lung Cancer. In Vivo. 34, 1117-1123, 2020.
87 Zhao, Y., Tao, L., Wang, B. et al. Interleukin-16 gene polymorphisms rs4778889, rs4072111, rs11556218, and cancer risk in Asian populations: a meta-analysis. Genet Test Mol Biomarkers. 18, 174-182, 2014.
88 Wang, X., Huang, J., Liu, F. et al. Aurora A kinase inhibition compromises its antitumor efficacy by elevating PD-L1 expression. J Clin Invest. 133, 2023.