簡易檢索 / 詳目顯示

研究生: 吳國才
Wu, Kuo-Tsai
論文名稱: 晶圓接合技術模擬與實驗
Wafer Bonding Process Simulation and Experiment
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 晶圓接合翹曲有限元素模型
外文關鍵詞: Wafer Bonding, Warpage, Finite Element Model
相關次數: 點閱:80下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要透過有限元素模擬晶圓接合過程,找出影響晶圓準確接合的原因,並以實驗驗證。由於近年來,半導體、光電及通訊產業的蓬勃發展下,具有低電壓、高速度、低功率等優點的元件製作上都會使用到晶圓接合技術,而晶圓接合加工時所產生的應力和翹曲會影響到元件的特性,晶圓的準確接合對後段的封裝製程影響甚大,再加上大尺寸晶圓片讓晶圓接合的困難度及成本提高,所以研究中期望透過模擬的方式減少實驗成本支出找出影響晶圓準確接合的問題。
    研究中將晶圓接合中產生偏移或是接合不良,歸因於晶圓前段製程和晶圓接合過程兩個問題來源。再從問題來源中找出製程前晶圓翹曲、機台的平整度、中心頂柱的作動方式等,利用有限元素模擬其接合過程,並與實驗結果比較。

    In this study, finite element simulation is used to wafer bonding process, finding out the reasons to affect wafer bonding and accuracy, and verified. In recent years, semiconductor, optoelectronics and telecommunications industry, flourishing under the low-voltage, high speed, low power production on the advantages of the device will be used to wafer bonding technology, and wafer bonding process arising from the stress and warpage will influence the device characteristics, The accuracy of wafer bonding affects following packaging process deeply, and large-size wafer to wafer bonding increase difficulty and costs, the study hope that simulation to reduce costs to find affection of accuracy for wafer bonding problems..
    In this study, the problem of wafer bonding offset or bonding worse, due to wafer manufacture and wafer bonding process. And then find out the wafer warpage, the flatness of the machine, the center pin actuation, the factors that may affect the accuracy of bonding, using the finite element simulation of the bonding process and comparison with experimental results.

    目錄 摘要 I Abstract II 致謝 III 目錄 V 表目錄 IX 圖目錄 X 第一章 緒 論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 第二章 晶圓接合技術 6 2-1 CMOS介紹 6 2-2 接合技術歷史演進 8 2-3 晶圓接合介紹 9 2-4 晶圓接合應用 10 第三章 數值分析理論 17 3-1 結構分析 17 3-1-1 控制方程式 17 3-1-2 力平衡方程式 17 3-1-3 應變與變位關係 19 3-1-4 應力與應變關係 19 3-2 軟體選用與簡介 21 3-3 數值分析 23 3-3-1 線性與非線性模擬 23 3-3-2 狀態非線性 25 3-3-3 接觸型態 25 3-3-4 接觸公式 28 3-4 晶圓翹曲理論 32 3-4-1 晶圓翹曲之主因 32 3-4-2 基底厚度與翹曲關係 34 第四章 有限元素分析 37 4-1 問題假設 37 4-1-1 前段製程之晶圓 37 4-1-2 晶圓接合過程 38 4-2 有限元素模型建立 41 4-3 邊界條件設定 43 4-4 分析結果與討論 47 4-4-1 晶圓翹曲問題分析結果 47 4-4-2 傾斜接合(a)問題分析結果 50 4-4-3 傾斜接合(b)問題分析結果 53 4-4-4 中心頂柱問題分析結果 56 第五章 實驗設備與方法 59 5-1 實驗設備 59 5-2 實驗流程與步驟 66 5-3 實驗量測方法 68 5-4 量測結果 70 第六章 結論與未來展望 72 6-1 結果討論 72 6-2 未來展望 73 第七章 晶圓薄膜應力分析 74 7-1 問題描述 74 7-2 工程分析 74 7-2-1 建立模型 76 7-2-2 邊界條件設定 79 7-3 分析結果 81 7-4 結果與討論 84 參考文獻 85 索引 88 自述 91

    [1]J. Haisma, G. A. C. M. Spierings, “Contact bonding,
    including direct-bonding in a historical and recent
    context of material acience and technology, physics and
    chemistry historical review in a broader scope and
    comparative outlook,” Materials science and engineering,
    R 37, pp.1-60, April 2002.
    [2]R.G.Horn, J. Am. Ceram. Soc., 73, p.1117, (1990).
    [3]K.-T.Wan, D.T.Amith, B.R.Lawn, J. Am. Ceram. Soc., 75,
    p.667, (1992).
    [4]J. B. Lasky, S.R. Stiffler, F. R. White, and J. R.
    Abernathey, IEDM Tech. Dig., p. 648 (IEEE, NewYork,1985).
    [5]J. B. Lasky, “Reversible Silicon Wafer Bonding for
    Surface Protection : Water-Enhanced Debonding”, Appl.
    Phys. Lett., 48, p.78, (1986).
    [6]M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “silicon-
    to-silicon direct bonding method”, J. Appl. Phys., 60
    (8), p.2987, (1986).
    [7]Q. –Y. Tong, X. -L. Xu, and H. Shen, “Diffusion and
    oxide viscous flow mechanism in SDB process and silicon
    wafer rapid thermal bonding”, Electronics Letters, 26,
    p.697,(1990).
    [8]K. –Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “Stability
    of interfacial oxide layers during silicon wafer
    bonding”, J. Appl. Phys., 65, p.561, (1989).
    [9]H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-
    temperature direct bonding of Silicon and silicon
    dioxide by surface activation method”, Sensors and
    Actuators, Sensors and Actuators, A70, p.164, (1998).
    [10]Q.-Y. Tong, U.Gösele, John Wiley & Sons, Inc.
    Publishers, p.178, (1999).
    [11]T. Iida, T. Itoh, D. Noguchi, Y. Takano, “Residual
    lattice strain in thin silicon-on-insulator bonded
    wafers: Thermal behavior and formation mechanisms,” J.
    Appl. Phys., 87, p.675-681,(2000).
    [12]Andreas Plößl and Gertrud Kräuter, “Wafer Direct
    Bonding : tailoring adhesion between brittle
    materials”, Materials Science and Engineering, R25,
    p.1~88, (1999).
    [13]W. E. Fua, Y. D. Linb, C. C. A. Chenb, M. K.
    Chenb, “Residual Stresses on Tungsten Thin Films after
    CMP Processes,” Proceedings of ICAM2010, pp. 318-322
    (2010).
    [14]Chuan-Chieh Lin, Hong-Tze Young, “Does the Residual
    Stress of Backend Grinding Dominate the Warping
    Problems in Wafer Thinning Process? ,” Proceedings of
    ICAM2010, pp. 323-327 (2010).
    [15]李輝煌,ANSYS工程分析-基礎與觀念,高立圖書有限公司出版, 台
    灣,2005年。
    [16]Huei-Huang Lee, Finite Element Simulations with ANSYS
    Worckbench 12, GOTOP INFORMATION INC.., Taiwan, May,
    2010.
    [17]ANSYS Structural Analysis Guide, Release 12.0, ANSYS,
    Inc., 2009.
    [18]ANSYS Theory Reference for ANSYS and ANSYS Workbench,
    Release 12.0, ANSYS, Inc., 2009.
    [19]ANSYS Engineering Data Help for Workbench, Release
    12.0, ANSYS, Inc., 2009.

    下載圖示 校內:2020-12-30公開
    校外:2020-12-30公開
    QR CODE