| 研究生: |
辛佩珊 Hsin, Pei-Shan |
|---|---|
| 論文名稱: |
利用CCM演算法求解多目標存貨管理之非線性模式 Using CCM Algorithm to Solve Nonlinear Program in Multiple Criteria Inventory Management |
| 指導教授: |
林珮珺
Lin, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 存貨管理 、非線性 、權重相乘模型 、正向座標法 |
| 外文關鍵詞: | Inventory management, Nonlinear, Weighted Product Model, Canonical Coordinate System |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著國際貿易的興盛以及不斷增多且複雜的商品品項,為了追求良好的服務水準,存貨管理已成為備受關注的課題。ABC法則被視為存貨管理之圭臬,此法則主張物品應依其對公司之貢獻程度進行排序並分為A、B、C三種等級,再針對各等級貨品設計不同管理方針。傳統上,年度金錢使用量(Annual dollar usage, ADU)被視作衡量物品對公司貢獻程度之唯一指標。但因存貨管理許考量之因素繁多,近年來有許多學者提出單一指標並不足以評估眾多且複雜的品項,也因此需要一套合理的多準則評估機制幫助存貨正確地被分類。
目前已有許多處理準則存貨管理的研究方法,其中較被廣泛應用的為層級分析法(Analytic Hierarchy Process, AHP),也有一些學者使用啟發式演算法,譬如類神經分析法來解決此類問題。然而,目前求解的方法多少存在些不足之處,包含較不客觀之評估準則以及程序過於複雜…等。本論文希望能透過非線性模型配合有效之演算法,提供較簡易且合理之管理模型。存貨管理問題的本質即為非線性,利用非線性模型求解較能反映問題本質,因此在本研究中使用權重相乘之模型(Weighted Product Model, WPM)進行求解;再配合一有效解決非線性問題之正向座標演算法(CCM),可解決一般利用非線性模型求解時遭遇之困難。WPM與CCM的組合能夠提供較為合理的存貨排序,在本研究中也將列出各種求解方法之結果比較。
As the varieties of goods have increased to meet the demands of an uncertain market, inventory management has been gradually gaining in importance in recent years. ABC principle is the traditional way dealing with inventory management which classify all the items (SKUs) into three categories based on their valuation. In the past the sole criterion, Annual Dollar Usage (ADU) has been viewed as the only way to value SKUs; however, lots of scholars revealed that only one criterion would be insufficient, multiple criteria should be taken into account when tackling inventory classification.
There were plenty of solutions to the issue of multiple inventory management problem; but they somewhat have some drawbacks as including too much subjectivity or being complicated. This study aims to provide a nonlinear solution accompany with an efficient algorithm called CCM for solving the problem. A nonlinear formula weighted product model (WPM) is adopted in this thesis; furthermore, a powerful and efficient algorithm CCM helps ease difficulty of using nonlinear model. The combination of WPM and CCM offers good result of inventory management which better represents importance of each SKUs. The final part of this thesis will compare results of different methods dealing with the same exemplification of multiple criteria inventory management.
1. Altay Guvenir, H., & Erel, Erdal. (1998). Multicriteria inventory classification using a genetic algorithm. European Journal of Operational Research, 105(1), 29-37.
2. Belton, Valerie, & Stewart, Theodor J. (2002). Multiple criteria decision analysis : an integrated approach. Boston: Kluwer Academic Publishers.
3. Bishop, Christopher M. (1995). Neural networks for pattern recognition. Oxford; New York: Clarendon Press ; Oxford University Press.
4. Chang, H.C., & Prabhu, N. (2003). Canonical coordinates method for equality-constrained nonlinear optimization. Applied Mathematics and Computation, 140(1), 135-158.
5. Chen, J. (2011). Peer-estimation for multiple criteria ABC inventory classification. Computers & Operations Research, 38(12), 1784-1791.
6. Doyle, J., & Green, R. (1994). Efficiency and Cross-Efficiency in DEA: Derivations, Meanings and Uses. The Journal of the Operational Research Society, 45(5), 567-578.
7. Flores, B. E., & Whybark, D. C. (1987). Implementing multiple criteria ABC analysis. Journal of Operations Management, 7(1-2), 79-85.
8. Flores, B. E., & Whybark, D. C. (1986). Multiple Criteria ABC Analysis. International Journal of Operations & Production Management, 6(3), 38-46.
9. Flores, Benito E., Olson, David L., & Dorai, V. K. (1992). Management of multicriteria inventory classification. Mathematical and Computer Modelling, 16(12), 71-82.
10. Forman, E. (1991). Export Choice, Decision Support Software [Decision Support Software]. VA: McLean.
11. Gajpal, Prem Prakash, Ganesh, L. S., & Rajendran, Chandrasekharan. (1994). Criticality analysis of spare parts using the analytic hierarchy process. International Journal of Production Economics, 35(1-3), 293-297.
12. Hadi-Vencheh, A. (2010). An improvement to multiple criteria ABC inventory classification. European Journal of Operational Research, 201(3), 962-965.
13. Jiang, R. (2010). A Mathematically Generated Criteria Weight Approach for Multi-Criterion Decision. Paper presented at the Management and Service Science (MASS), 2010 International Conference on.
14. Jiang, R., & Yuan, Xiao Na. (2008). A New Approach for Multi-Criteria ABC Analysis. Advanced Materials Research, 44-46, 581-586.
15. Keeney, R. L., & Raiffa, H. (1972). A critique of formal analysis in public sector decision making. In Alvin W Drake, Ralph L Keeney & Philip M Morse (Eds.), Analysis of public systems (pp. 64-75). Cambridge: MIT Press.
16. Levitan, Alan, & Gupta, Mahesh. (1996). Using Genetic Algorithms to Optimize the Selection of Cost Drivers in Activity-based Costing. Intelligent Systems in Accounting, Finance & Management, 5(3), 129-145.
17. MacCrimmon, Kenneth R., & Rand, Corporation. (1968). Decisionmaking among multiple-attribute alternatives : a survey and consolidated approach. Santa Monica, Calif.: Rand Corp.
18. Ng, W. L. (2007). A simple classifier for multiple criteria ABC analysis. European Journal of Operational Research, 177(1), 344-353.
19. Partovi, Fariborz Y., & Anandarajan, Murugan. (2002). Classifying inventory using an artificial neural network approach. Computers & Industrial Engineering, 41(4), 389-404.
20. Pearman, A. D. (1977). A Weighted Maximin and Maximax Approach to Multiple Criteria Decision Making. Operational Research Quarterly (1970-1977), 28(3), 584-587.
21. Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700.
22. Saaty, Thomas L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281.
23. Sexton, Thomas R., Silkman, Richard H., & Hogan, Andrew J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73-105.
24. Triantaphyllou, Evangelos. (2000). Multi-criteria decision making methods : a comparative study. Dordrecht; Boston, Mass.: Kluwer Academic Publishers.
25. Varetto, Franco. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking & Finance, 22(10-11), 1421-1439.
26. Wan, Jie, Wang, Wen, & Ya-nan, Luo. (2010). Research on the ABC classification based on DEA and fuzzy method for military materials. Paper presented at the Automation and Logistics (ICAL), 2010 IEEE International Conference.
27. Zhou, P., & Fan, L. (2007). A note on multi-criteria ABC inventory classification using weighted linear optimization. European Journal of Operational Research, 182(3), 1488-1491.
28. Xia, W., & Wu, Z. (2007). Supplier selection with multiple criteria in volume discount environments. Omega, 35(5), 494-504.
校內:2017-08-14公開