簡易檢索 / 詳目顯示

研究生: 蕭詩涵
Hsiao, Shih-Han
論文名稱: 臺灣半動態基準地表變形模式之同震位移格點模型新增時機
Timing of Coseismic Displacement Grid Model Construction for Establishing a Semi-Dynamic Datum in Taiwan
指導教授: 景國恩
Ching, Kuo-En
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 半動態基準地表變形模式同震位移格點模型斷層正演模型
外文關鍵詞: Semi-dynamic datum, Surface deformation model, Coseismic displacement grid model, Forward fault model
相關次數: 點閱:111下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於地震事件頻繁發生的國家而言,同震位移格點模型之建立為維護半動態大地基準精度的重要關鍵。然而,何時該新增同震位移格點模型,迄今為止仍無一套明確而具體的判斷標準。為了解決這個問題,本研究首先取得全臺各GNSS連續測站2003年1月至2018年8月之觀測資料,解算每日坐標成果,並擬合坐標時間序列後,分析統計臺灣地區GNSS之平面坐標精度約為14 mm。換言之,地表最大同震位移量14 mm即為新增同震位移格點模型之門檻值。然而,如何即時判斷地表同震位移量是否有可能達到此門檻?本研究提出了以下兩種方案:首先,方案一為臺灣及其鄰近地區於ML > 4.0之地震事件發生時,將根據即時地震矩張量監測系統所提供之即時地震資訊,搭配中央氣象局的滑移及地震規模經驗式推導同震滑移量,並以斷層正演模型進行地表同震格點位移量之模擬。而根據本研究之模擬結果顯示,地震規模達ML 6.1以上之地震事件較有可能於地表造成超過14 mm之同震位移量,進而產生新增同震位移格點模型之必要。而由於並非所有國家皆有即時地震張量矩監測系統,因此本研究提出第二方案,根據臺灣之孕震帶分布進行判定網格之建立與斷層幾何參數之設定。於此判定網格中,本研究假設每個格點皆為震源,並將其設為斷層面之中心點,再透過斷層正演模型搜尋每個網格點於其相應之地表同震位移量達到14 mm時所需的最小地震規模。根據模擬結果,要在臺灣陸地區域產生14 mm之地表同震位移量,則其所需最小規模約為ML 6.0,與第一方案之結果相當。此外,為驗證上述兩種方案之合理性與可行性,本研究彙整臺灣1999年至2019年間之地震資料以及已發表之重大地震事件同震位移場文獻,進行地表同震格點位移量之模擬,並以雙線性內插模擬各地震之震源位置發生地震時,要在地表產生最大水平位移量大於14 mm,其所需之最小區域地震規模。最後,當確認地震事件發生且其地表同震位移量超過門檻值而需新增同震位移格點模型後,將以後續大地觀測作業取得之同震位移資料以運動學模型建立該地震事件之同震位移格點模型以維護半動態基準之精度。

    Construction of the coseismic displacement grid model (hereinafter referred to as grid model) is an important strategy to maintain the semi-dynamic geodetic datum in the countries located at the plate boundaries due to abundant major earthquakes. To clarify the timing of a grid model construction, we first evaluated the horizontal precision of continuous GNSS observations in Taiwan as approximately 14 mm in terms of the coordinate time series analysis from 2003 to 2018. In other words, the maximum coseismic displacement of 14 mm is the threshold to build a grid model. However, how to real-time understand whether an earthquake may reach the threshold? Two strategies were proposed. First, the coseismic displacements will be evaluated using a kinematic fault model when an ML > 4.0 earthquake occurs by information from Real-Time Moment Tensor Monitoring System to see whether it reach the threshold. Second, a checking grid of the required minimum magnitude was suggested. The checking grid and geometry parameters were constructed in terms of the seismogenic zone inferred from seismicity of Taiwan. A series of forward fault model tests were implemented to search for the required minimum magnitude whose corresponding displacement reaches the threshold. Based on this examination, the general required minimum magnitude is ML 6.0, which is comparable to the results from first strategy. In addition, the correctness of above two strategies were also verified by comparing the published coseismic displacement fields in Taiwan from 1999 to 2019.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第二章 坐標基準之文獻回顧 5 2.1 大地基準之精度維護 5 2.2 地表變形模式 8 第三章 測量資料來源與處理 14 3.1 GNSS資料選擇與來源 14 3.2 GNSS連續站資料解算與分析 17 3.2.1 GNSS連續站資料解算 17 3.2.2 GNSS連續站資料時間序列擬合與精度分析 18 第四章 同震位移格點模型新增時機 25 4.1 即時地震監測資料 25 4.1.1 即時地震矩張量監測系統 25 4.1.2 地震速報系統 25 4.1.3 地震規模之選取 26 4.2 斷層錯位模型 29 4.2.1 斷層錯位模型理論說明 29 4.2.2 斷層模型主要參數之建立 30 4.3 第一方案 – 利用即時地震矩張量監測系統資料推估同震位移量 31 4.3.1 斷層正演模型之參數設定 32 4.3.2 地表位移量模擬結果與分析 33 4.4 第二方案 – 臺灣地區同震位移格點模型新增時機判定網格之建立 36 4.4.1 網格化孕震深度 36 4.4.2 斷層型態與地表位移情形之測試 39 4.4.4 斷層參數搜尋結果與分析 44 第五章 模型驗證 54 5.1 同震位移場文獻彙整 54 5.2 即時地震矩張量監測系統地表同震位移量推估模型驗證 55 5.3 臺灣地區同震位移格點模型新增時機判定網格驗證 63 第六章 討論 67 第七章 結論 70 參考文獻 72 附錄一 重大地震事件地表同震位移量推估模型驗證 79

    內政部國土測繪中心(2000)。https://www.nlsc.gov.tw/Home/MakePage/127?level=127,(最後瀏覽日期:2019年5月22日)。
    內政部國土測繪中心(2010)。大地基準及一九九七坐標系統 2010 年成果說明。
    內政部國土測繪中心 (2013)。102年度建置現代化TWD97國家坐標系統變位模式工作總報告。
    內政部國土測繪中心(2016)。105年度精進現代化TWD97國家坐標系統變位模式工作總報告。
    內政部國土測繪中心(2017)。106年度精進現代化TWD97國家坐標系統變位模式工作總報告。
    內政部(2017)。地籍測量實施規則。
    內政部國土測繪中心(2018)。0206花蓮地震後基本控制點測量成果說明。
    內政部國土測繪中心(2019)。https://www.nlsc.gov.tw/Home/MakePage/42?level=42,(最後瀏覽日期:2019年5月22日)。
    中央氣象局(2017)。2017年2月份地震測報分析。
    中央氣象局 (2018)。https://scweb.cwb.gov.tw/zh-TW/page/ObservationNetwork/212,(最後瀏覽日期:2019年5月25日)。
    台灣地震科學中心 (2013)。台灣地震科學中心通訊,第2期,頁1-4。
    甘志文、蒲新杰、李巧盈、許炘志、蕭乃祺(2015)。中央氣象局自動化震源機制解算,氣象學報,第52卷,第2期,頁69-86。
    辛在勤 (1993)。臺灣地區強地動觀測計畫,臺灣地區強地動觀測計畫研討會論文摘要,頁1-10。
    余水倍、陳宏宇、蘇宣翰、許雅儒、郭鎧紋、蔡俊雄 (2001)。台灣GPS密集連續觀測網之規劃與建立,中央氣象局地震技術報告。
    余水倍、蔡旻倩、蔡宜純、許雅儒、蘇宣翰 (2007)。台灣地區地殼形變之時空變化研究,中央氣象局地震技術報告。
    邱元宏 (2016)。時變基準於臺灣基本測量與地籍測量影響探討,國立交通大學土木工程學系博士論文。
    林文勇,劉至忠,劉正倫 (2012)。臺灣大地基準之一九九七坐標系統2010年成果,地籍測量:中華民國地籍測量學會會刊,第31卷,第3期,頁1-16。
    科技部(2017)。2016年高雄美濃地震‐震後科學調查
    郭徐伸(2014)。建立台灣半動態基準之水平速度模型,國立成功大學測量及空間資訊學系碩士論文。
    景國恩、楊名、陳鶴欽、林文勇、梁旭文、劉正倫(2017)。臺灣半動態基準之建立與展望,國土測繪與空間資訊,第5卷第2期,頁83-109。
    Altamimi, Z., P. Rebischung, L. Metivier,& Collilieux X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, Journal of Geophysical Research: Solid Earth, 121, 6109–6131. https://doi.org/10.1002/2016JB013098
    Chai, B. H. T., 1972. Structure and tectonic evolution of Taiwan. American Journal of Science, 272, 389-442.
    Chen, H. Y., Hsu, Y. J., Lee, J. C., Yu, S. B., Kuo, L. C., Jiang, Y. L., Liu, C. C., & Tsai, C. S. (2009). Coseismic displacements and slip distribution from GPS and leveling observations for the 2006 Peinan earthquake (Mw 6.1) in southeastern Taiwan, Earth, Planets and Space, 61(3), 299-318.
    Ching, K. E., Johnson, K. M., Rau, R. J., Chuang, R. Y., Kuo L. C., & Leu, P. L. (2011). Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model, Earth and Planetary Science Letters, 301(1-2), 78-86.
    Chuang, R. Y., Johnson, K. M., Kuo, Y. T., Wu, Y. M., Chang, C. H., & Kuo, L. C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge?, Geophysical Research Letters, 41(10), 3464-3470.
    Chuang, R. Y., Johnson, K. M., Wu, Y. M., Ching, K. E., & Kuo, L. C. (2013). A midcrustal ramp-fault structure beneath the Taiwan tectonic wedge illuminated by the 2013 Nantou earthquake series, Geophysical Research Letters, 40(19), pp.5080-5084.
    Chen, H. Y., Kuo, L. C., & Yu, S. B. (2004). Coseismic movement and seismic ground motion associated with the 31 March 2002 off Hualien, Taiwan, earthquake, Terrestrial, Atmospheric and Oceanic Sciences, 15(4), 683-695.
    Chen, H. Y., Lee, J. C., Kuo, L. C., Yu, S. B., & Liu, C. C. (2008). Coseismic surface GPS displacement and ground shaking associated with the 2006 Pingtung earthquake doublet, offshore southern Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 683-696.
    Chen, H. Y., Yu, S. B., Kuo, L. C., & Liu, C. C. (2006). Coseismic and postseismic surface displacements of the 10 December 2003 (Mw 6.5) Chengkung, eastern Taiwan, earthquake, Earth, Planets and Space, 58(1), 5–21.
    Grant, D., Blick, G. H., Pearse, M. B., Beavan, R. J.,and Morgan, P. J. (1999). The development and implementation of New Zealand Geodetic Datum 2000, Paper presented at the IUGG99 General Assembly, Birmingham, UK.
    Grant, D., & Pearse, M. B. (1995). Proposal for a Dynamic National Geodetic Datum for New Zealand, Paper presented at the IUGG XXI General Assembly, Boulder, Colorado.
    Hall, R. (1995). Cenozoic motion of the Philippine Sea Plate: Palaeomagneti evidence from eastern Indonesia, Tectonics, 14(5), 1117-1132.
    ITRF. (2016). Retrieved, 05/06/2019, from http://itrf.ensg.ign.fr/ITRF_solutions/2014/ITRF2014. php
    Kanamori, H. (1977). The energy release in great earthquake, Journal of Geophysical Research, 82(20), 2981-2987. https://doi.org/10.1029/JB082i020p02981
    Li, C., K., Ching, K., E., & Chen, K., H. (2019). The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016, Journal of Geodesy. Advance online publication. https://doi.org/10.1007/s00190-019-01267-5
    McCaffrey, R. (2002). Crustal Block Rotations and Plate Coupling, In S. Stein, & J. Freymueller (Eds.), Plate boundary zones, 30, 101-122, Washington, D. C: AGU.
    Nikolaidis, R., 2002, Observation of geodetic and seismic deformation with the Global Positioning System, Thesis (Ph.D.), University of California:San Diego.
    Nur, A., & Mavko, G. (1974). Post-seismic viscoelastic rebound. Science, 183(4121), 204-206. https://doi.org/10.1126/science.183.4121.204
    Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75(4), 1135-1154.
    Okada, Y., 1992, Internal deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 82(2), 1018-1040.
    Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature, 475, 373-376. https://doi.org/10.1038/nature10227
    Pearson, C., McCaffrey, R., Elliott, L., & Snay, R. (2010). HTDP 3.0: Software for Coping with the Coordinate Changes Associated with Crustal Motion, Journal of Surveying Engineering, 136(2), 80-90. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000013
    Peltzer, G., Rosen, P., Rogez, F., & Hudnut, K. (1996). Postseismic rebound in fault step-overs caused by pore fluid flow, Science, 273, 1202-1204.
    Parkinson, B., & Spilker, J. (1996). Global Positioning System: Theory and Applications Vol. II. Washington, DC: American Institute of Aeronautics and Astronautics.
    Pearson, C., & Snay, R. (2012). Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames, GPS Solut., 17(1), 1-15.
    Roeloffs, E. (1996). Poroelastic techniques in the study of earthquake-related hydrological phenomena, Advances in geophysics, 37, 135-195. https://doi.org/10.1016/S0065-2687(08)60270-8
    Rabah, M., Shaker, A., & Farhan, M. (2015). Towards a Semi-Kinematic Datum for Egypt, Positioning, 6, 49-60.
    Seeber, G. (1993). Satellite geodesy: Foundations, methods, and applications. Waler de Gruyter, Berlin, New York.
    Susilo, S., Abidin, Z. H. Z., Meilano, I., & Sapiie, B. (2015). On the Development and Implementations of the New Semi-Dynamic Datum for Indonesia, Proceedings of the FIG Working Week.
    Shin, T. C., Chang, C. H., Pu, H. C., Lin, H. W., & Leu, P. L. (2013). The Geophysical Database Management System in Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 24(1), 11-18. https://doi: 10.3319/TAO.2012.09.20.01(T)
    Shin, T. C., Kou, K. W., Lee, W. H. K., Teng, T. L. and Tsai, Y. B. (2000). A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake, Seismological Research Letters,71, 23-29.
    Snay, R., Pearson, C., & Saleh, J. (2018). HTDP User's Guide. (Software Version 3.2.7), National Geodetic Survey, NOAA.
    Teng, L., S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. In: J. Angelier (Editor), Geodynamic Evolution of the Eastern Eurasian Margin. Tectonophysics, 183, 57-76.
    Tsuji, H., & Komaki, K. (2005). Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan, Bulletin of the Geographical Survey Institute, 52, 1-11.
    Tsuji, H., & Matsuzaka, S. (2004). Realization of Horizontal Geodetic Coordinates 2000, Bulletin of the Geographical Survey Institute, 51, 11-30.
    Tse, S.T., & Rice, J.R. (1986) Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research, 91(B9), 9452–9472.
    Thatcher, W., & Rundle J.B. (1984). A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones. Journal of Geophysical Research, 89(B9), 7631–7640.
    Wells, D. L., & Coppersmith, K. J., (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84(4), 974-1002.
    Wu, Y. M., Shin T. C., & Chang, C. H., (2001). Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake, Bulletin of the Seismological Society of America, 91(5), 1218–1228.
    Winefeild, R., Crook, C., & Beavan, J. (2010). The application of a localised deformation model after an earthquake. Paper presented at 24th FIG International Congress, Sydney, Australia.
    Yoshiyuki, T., Hiroaki, S., Jun, S., Kazumi, I., Tomoo, T., Hideaki, H., et al. (2007). Efficient maintenance of the Japanese geodetic datum 2000 using crustal deformation models – PatchJGD & semi-dynamic datum, Bulletin of the Geographical Survey Institute, 54, 49-59.
    Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1), 41-59.
    Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramons, E. G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon region, Geophysical Research Letters, 26(7), 923-926.
    Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333, 199-217.
    Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo-Chen, H., Chang, C. P., Wang, C. C., et al. (2019). Insights into seismogenic deformation during the 2018 Hualien, Taiwan, earthquake sequence from InSAR, GPS, and modeling, Seismological Research Letters, 90(1), 78-87. https://doi.org/10.1785/0220180228
    Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan, Bulletin of the Seismological Society of America, 101(2), pp.464–481.
    Yang, M., Rau, R. J., Yu, J. Y., & Yu, T. T. (2000). Geodetically observed surface displacements of the 1999 Chi-Chi, Taiwan, earthquake, Earth, Planets and Space, 52(6), 403–413.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE