簡易檢索 / 詳目顯示

研究生: 陳志宇
Chen, Chih-Yu
論文名稱: 溴化鋰吸濕系統之熱性能分析
Thermal Analysis of A Lithium-bromide Absorption System
指導教授: 邱政勳
Chiou, Jenq-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 真空乾燥吸濕/排氣系統溴化鋰水溶液
外文關鍵詞: Vacuum drying, absorption/desorption system, aqueous lithium bromide solution
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般皆知在溶膠的乾燥過程中容易產生粒子的凝聚,此凝聚現象會因溶膠裡固體粒子的奈米化而更形嚴重。基於液態會在真空腔內瞬間汽化(當真空腔內壓力小於其飽和壓力時),而且汽化的膨脹力可以抵消粒子間之吸收力,所以利用真空乾燥來避免或減輕粒子之再凝聚。
    然而真空腔內水分子汽化現象很容易因為水分子汽化後體積急驟地增加(壓力也增加)而終止。所以在本文中吾人建立了一連續性的吸濕/排氣系統可持續的在真空腔內吸收汽化的水汽,並將所吸收之水排出真空腔體,來維持低壓真空環境。
    為了提升吸濕能力,在實驗測試中採用了兩種方法,第一種是將真空腔內冷卻水管管型由平滑管改成微針鰭管來提升溴化鋰水溶液與冷卻水之間的熱傳率,第二種則是在溴化鋰水溶液中添加少量之2-乙基己醇(200ppm)而改變溶液之表面張力進而增強溶液與水汽之熱質傳遞,兩者皆可明顯地改善吸水率與總熱傳率。
    由結果顯示,當以無介面活性劑的平滑管為比較基準,光改變成微針鰭管的效果可提升吸濕率約13~38%,提升總熱傳率約17~28%,而添加劑的效果可提升約11~65%之吸濕率及24~29%之總熱傳率。當同時改變針鰭管及加入添加劑後吸水率會上升至39~79%,而總熱傳量則上升到26~55%。

    It is well known that drying of liquid-borne powders will create agglomerates, and the problem of agglomeration is particularly acute in the nanometer-size range. Since the liquid water will instantaneously flash into water vapor under the condition where the pressure is below its saturated state, and the outward expansion force during flashing is able to counteract the attracting force among fine particles, it is thus reasonable to use vacuum dry technique to prevent/mitigate agglomeration.

    However, the flashing process will be terminated once the environment pressure risen above saturation state due to the tremendous volume expansion when liquid water converts to vapor. In order to maintain a low pressure environment for vacuum drying process, in this study, an absorption/ desorption system is successfully constructed to continuously absorb the flashed vapor in the vacuum chamber and desorb the absorbed water outside the vacuum chamber.

    In the absorption/desorption tests, two techniques were applied to improve the absorption capability. The first kind is the replacement of cooling-water tube from bare tube to micro-pin-fin tube to enhance the heat transfer between aqueous lithium bromide solution and cooling water, while the second kind is the addition of 2-ethyl-1-hexanol(200ppm) to aqueous lithium bromide solution to increase the heat and mass transfers between solutions and vapors.

    From the test results indicated that both the vapor absorption rate and the overall heat transfer rate were greatly promoted by each technique. Compared to the basic case(bare tube without surfactant), the effect of micro-pin fin tube can increase 13~38% on vapor absorption rate and 17~28% on overall heat transfer rate, the effect of additive can increase 11~65% on vapor absorption rate and 24~29% on overall heat transfer rate. With both micro-pin-fin tube and additive, the enhancement on vapor absorption is about 39~79% and on overall heat transfer rate is about26~55%.

    中文摘要...................................Ⅰ ABSTRACT..................................Ⅱ 誌謝.......................................Ⅲ 目錄.......................................Ⅳ 表目錄......................................Ⅵ 圖目錄......................................Ⅶ 符號說明.....................................X 第一章 緒論.................................1 1-1 研究背景..............................1 1-2 文獻回顧..............................3 1-3 研究目的與動機.........................5 1-4 本文架構..............................6 第二章 吸濕系統的理論.........................7 2-1 溴化鋰吸收式冷凍系統....................7 2-2 吸濕原理..............................10 2-3 吸濕系統的流程規畫......................13 第三章 真空吸濕系統的模擬......................16 3-1 ABSIM模擬程式的介紹....................16 3-1-1 基本假設...............................17 3-1-2 程式結構...............................17 3-2 真空吸濕系統的模擬......................21 3-2-1 開放式系統之架構........................21 3-2-2 變數設定...............................23 3-3 模擬結果...............................27 第四章 實驗測試與結果..........................35 4-1 吸濕實驗之架構..........................35 4-2 實驗程序與步驟..........................40 4-3 實驗數據的誤差..........................44 4-4 吸濕實驗的變動參數.......................45 4-5 測試結果與分析..........................49 第五章 結論與未來展望..........................60 5-1 結論...................................60 5-2 未來展望................................60 參考文獻........................................62 附錄A-溴化鋰溶液的性質............................66 自述...........................................71

    [1]Zhang, L.D., “Nanomaterials”, Chemical Industry Press, China, 2000.
    [2]Luna, W.L., Gao, L., Guo, J.K., “Study on drying stage of nanoscale powders preparation”, Nanostructured Materials, 10(7), pp.1119-1125, 1998.
    [3]Chow, G.M., Noskova, N.I., “Nanostructured Materials: Science and Technology”, Kluwer Academic Publishers, Amsterdam, 1997
    [4]Rumpf, H. and Schubert, H., Adhesion Forces in Agglomeration Processes, in Ceramic Processing before Firing, Eds. G. Y. Onoda and L. L. Hench, Wiley, New York, 1978.
    [5]Rahaman, M. N., Ceramic Processing and Sintering, New York 1995.
    [6]Baohe Wang, Wenbo Zhang, “Progress in Drying Technology for Nanomaterials”, Drying Technology, 23, pp.7-23, 2005.
    [7]劉志強、李小斌、彭志宏、童斌、劉桂華,濕化學法制備超細粉末過程中的團聚機理與消除方法,化學通報,Vol.7,pp.54-57,1999。
    [8]Stoecker, W.F. Jones, J.W., Refrigeration & Air Conditioning, McGRAW-HILL international editions, pp. 328-347, 1982.
    [9]Grossman, G., Michelson, E., A Modular Computer Simulation of Absorption Systems, ASHRAE Trans., Vol.91 Part 2B, pp.1808-1827, 1985.
    [10]Grossman, G., Gommed, K., A Computer Model for Simulation of Absorption Systems in Flexible and Modular Form, ASHRAE Trans., Vol.93 Part 2, pp.2389-2427, 1987.
    [11]Cosenza, F., Absorption in Falling Water/LiBr Films on Horizontal Tubes, ASHRAE Trans., Vol.96 Part 1, pp.693-701, 1990.
    [12]工研院能資所吸收式冰水機研究篇,溴化鋰溶液在水平管上的薄膜吸收研究,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.236-241,1999。
    [13]Tsai, B.B, Perez-Blanco, H., Limits of mass transfer enhancement in lithium bromide-water absorbers by active techniques, International Journal of Heat Mass Transfer, Vol.41, pp. 2409-2416, 1998
    [14]Ren, Z. Y., Jiang, C. Y., Chen, Y. G., Experimental study on the influences of the lithium-bromide’s spray amount on the system’s performance, Refrigeration Air Conditioning & Electric Power Machinery, Vol.26, No.5, pp.14-18, 2005.
    [15]Kyung, I., Herold, K. E., Performance of Horizontal Smooth Tube Absorber With and Without 2-Ethyl-Hexanol, Journal of Heat Transfer, Vol.124, pp.177-183, 2002.
    [16]Kulankara, S., Herold, K.E., Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives:the effect of additice vapor transport, International Journal of Refrigeration, Vol.25, pp. 383-389, 2002.
    [17]Nosoko T., Miyara A., Nagata T., Characteristics of falling film flow on completely wetted horizontal tubes and the associated gas absorption, International Journal of Heat Mass Transfer, Vol.45, pp. 2729- 2738, 2002.
    [18]Park, C.W., Cho, H.C, Kang, Y.T., The effect of heat transfer additive and surface roughness of micro-scale hatched tubes on absorption performance, International Journal of Refrigeration, Vol.27, pp.264-270, 2004.
    [19]Yoon J.I., Kim E. et al., Heat transfer enhancement with a surfactant on horizontal bundle tubes of an absorber, International Journal of Heat Mass Transfer, Vol.45, pp. 735- 741, 2002.
    [20]郭儒家,吸收式熱泵之種類及其原理,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.1-6,Dec. 1999。
    [21]Grossman, G., Childs, K. W., Computer Simulation of a Lithium Bromide-Water Absorption Heat Pump for Temperature Boosting, ASHRAE Trans., Vol.89 Part 1B, pp.240-248, 1983.
    [22]Grossman G., Zaltash A., ABSIM — modular simulation of advanced absorption systems, International Journal of Refrigeration, Vol.24, pp.531- 543, 2001.
    [23]Grossman, G., Modular Simulation of Absorption Systems User’s Guide and Reference ABSIM windows version 5.0, Oak Ridge National Laboratory (ORNL), Tennessee, 1998.
    [24]李崇江、嚴智藩,吸收式冰水機原理、系統與運轉維護,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.72-87,Dec. 1999。
    [25]工研院能資所,溴化鋰溶液的性質,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.14-23,Dec. 1999。
    [26]Holman, J.P., Experimental methods for engineers, McGraw- Hill , New York, pp.49- 62, 1994
    [27]Kim, K.J., The interfacial turbulence in falling film absorption:effects of additives, International Journal of Refrigeration, Vol.19, No.5, pp.322-330, 1996
    [28]Ellington, R.T., The Absorption Cooling Process, Institute of Gas Technology, Chicago, 1957.
    [29]李崇江、林佩芝,吸收式冰水機之腐蝕問題及防制對策,吸收式冷凍空調技術專輯[紀念李崇江博士],中華民國冷凍空調協會,pp.107-114,Dec. 1999。
    [30]ASHRAE, Handbook of Fundamentals. Atlanta, 1997.
    [31]Lee, R.J., DiGuilio, R.M., Jeter, S.M., Teja, A.S., Properties of lithium bromide–water solutions at high temperatures andconcentration. II. Density and viscocity. ASHRAE Trans 1990;96(Pt. 1):709–28.

    下載圖示 校內:2013-08-17公開
    校外:2013-08-17公開
    QR CODE