| 研究生: |
王耀榆 Wang, Yao-Yu |
|---|---|
| 論文名稱: |
含液晶可調式負折射光子晶體分析 Analysis of Negative Diffraction Photonic Crystal tuned by Liquid Crystal |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 負折射 、光子晶體 |
| 外文關鍵詞: | photonic crystal, negative refraction |
| 相關次數: | 點閱:80 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在早期研究及探討光子晶體結構主要方向為其能隙區之運用,如當光波導或於結構中加入缺陷當共振腔等。而近幾年來發現在其傳導區擁有獨特的色散特性,尤其具有負折射的特性,使得該方面之研究更成為最近學術界極度熱門的話題。
本文將介紹如何以平面波展開法求得二維光子晶體等頻圖及解說二維時域有限插分法之運算原理,再使用這些方法分析光子晶體的異常折射現象。
當光子晶體結構的折射係數改變時,等頻圖會產生變化,折射角也因此改變。以此概念,我們若添加折射係數可調變之材料到光子晶體中,則應可設計出一可調折射角之光學元件。本文選用液晶材料當為可調變之材料,即利用液晶材料的非等向性和可藉由電場控制液晶導軸角度的特性,將液晶材料加入二維光子晶體結構中,來觀察與分析不同液晶導軸角度對於折射角的影響。我們針對兩無因次化頻率做分析,發現負折射角可做大角度的調變,及可把折射角度從負調整為正,論證了添加液晶之光子晶體具有折射角之可調性。最後,對於調至臨界角之後的全反射,則提出可做為光開關之用途。
The photonic crystals (PhCs) are structures with periodically modulated dielectric constants. Recently, it was proved that the diffraction effects of PhCs can produce the effective negative refraction or the negative index. Hence, the studying of PhCs is not limited in the band gap region. The anomalous refractive properties (especially negative refraction) of PhCs have become hot topics of scientific research over the past few years.
In this thesis, the plane wave expansion method is used to obtain the equifrequency surface. The anomalous refractive properties of photonic crystal are analyzed by using the equifrequency surface. Then we use the finite difference time domain method to simulate the light propagation in PhCs and compare the refractive angle with that predicted by the equifrequency surface.
From the fact that the EFS varied as the refractive index changed, we speculate that the propagation direction in photonic crystal structures could change. Therefore, the index-tunable materials can be used to control the refractive direction.
The properties of liquid crystals (LCs) can be changed easily by applying an external electric field. Hence, they are adaptable for tuning. The LCs are infiltrated into the photonic crystal structures and the relationship between the refractive angle and the angle of the director is studied. It is demonstrated that the refraction of PhCs can be tuned by LCs. The direction of the negative refraction is controlled by changing the direction of the LCs director. We select two frequencies to analyze the tunablility. A large tunable range of the negative refraction is achieved at one frequency. At the other frequency, the refractive angle can vary from negative to positive. Finally, we find that the refraction of a tunable PhC with nematic liquid crystals can be used to design an optical switch.
[1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[2] R. A. Shelby, D. R. Smith and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001)
[3] Martin W McCall, Akhlesh Lakhtakia and Werner S Weiglhofer, “The negative index of refraction Demystified,” Eur. J. Phys. 23, 353 (2002)
[4] Xiaobiao Huang and W. L. Schaich, “Wave packet propagation into a negative index medium,” Am. J. Phys. 72, 1232 (2004)
[5] J. F. Woodley and M. Mojahedi, “Negative group velocity and group delay in left-handed media,” Phys. Lett. E 70, 046603 (2004)
[6] J.B. Pendry, “Negative Refraction Makes Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[7] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
[8] Boris Gralak, Stefan Enoch and Grard Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012 (2000)
[9] S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[10] S. Foteinopoulou, E. N. Economou and C. M. Soukoulis, “Refraction in media with a negative refraction index,” Phys. Rev. Lett. 90, 107402 (2003).
[11] S. Foteinopoulou1 and C. M. Soukoulis, “EM wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects”
[12] Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104-1 (2002).
[13] Zhixiang Tang, Runwu Peng and Dianyuan Fan, “Absolute left-handed behaviors in a triangular elliptical-rod photonic crystal,” Opt. Express 13, 9796 (2005)
[14] R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “Refraction and rightness in photonic crystals” Opt. Express 13, 8596 (2005).
[15] D. Felbacq and R. Smali, “Bloch Modes Dressed by Evanescent Waves and the Generalized Goos-Hnchen Effect in Photonic Crystals,” Phys. Rev. Lett. 92, 193902-1 (2004).
[16] A. Martnez and J. Mart, “Negative refraction in two-dimensional photonic crystals : Role of lattice orientation and interface termination,” Phys. Rev. B 71, 235115 (2005)
[17] Z. Lu, S. Shi, Christopher A. Schuetz, and Dennis W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Express 13, 2007 (2005)
[18] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyln, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1 (2004)
[19] S. Feng, Z. Y. Li, Z. F. Feng, K. Ren, B. Y. Cheng, and D. Z. Zhang, “Focusing properties of a rectangular-rod photonic-crystal slab,” J. Appl. Phys. 98, 63102 (2005)
[20] R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional Photonic Crystal,” Phys. Rev. B 71, 085106 (2005).
[21] R. Zengerle and P. C. Hoang, “Wide-angle beam refocusing using negative refraction in non-uniform photonic crystal waveguides,” Opt. Express 13, 5719 (2005)
[22] X. Wang, Z. F. Ren and K. Kempa, “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Opt. Express 12, 2919 (2004)
[23] A. Martnez and J. Mart, “Analysis of wave focusing inside a negative-index photonic-crystal slab,” Opt. Express 13, 2858 (2005)
[24] X. Zhang, “Active lens realized by two-dimensional photonic crystal,” Phys. Lett. A 337, 457 (2005)
[25] L. Wu, “Dual lattice photonic-crystal beam splitter,” Appl. Phys. Lett. 86, 211106 (2005)
[26] Wu Li-jun and Mazilu, “Beam steering in planar photonic crystal based on its anomalous dispersive properties,” Science A, 45 (2006)
[27] L. Wu, M. Mazilu, and T. F. Krauss, “Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,” J. Lightwave Technol. 21, 561 (2003)
[28] A. S. Jugessur, A. Bakhtazard, and A. G. Kirk, “Compact and integrated 2-D photonic crystal super-prism filter-device for wavelength demultiplexing application,” Opt. Express 14, 1632 (2006)
[29] T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of Photonic crystal superprism and superlens,” Opt. Express 13, 10768 (2005)
[30] V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13, 7699 (2005)
[31] Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346, 243 (2005)
[32] D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, “Electro-Optic control of the superprism effect in photonic crystals,” Appl. Phys. Lett. 82, 3176 (2003).
[33] Sibei Xiong and Hiroshi Fukshima, “Analysis of light propagation in index-tunable photonic crystals” J. Appl. Phys. 94, 1286 (2003)
[34] W. Park and J. B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845 (2004).
[35] H. Takeda and K. Yoshino, “Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals,” Phys. Rev. E 67, 056607 (2003).
[36] Kurt Busch and Sajeev John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett 83, 967 (1999).
[37] S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, and S. John, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389 (2000).
[38] C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 045133 (2005).
[39] C. H. Kuo and Z. Ye, “Deflection of electromagnetic waves by photonic crystals made of arrays of dielectric cylinders,” Phys. Rev. A 331, 342 (2004).
[40] H. T. Chien, H. T. Tang, C. H. Kuo, C. C. Chen and Z. Ye, “Direct diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004).