| 研究生: |
盧涵瑩 Lu, Han-Yin |
|---|---|
| 論文名稱: |
細胞週期與DNA合成前期之長度估計數學模型 Mathematical Model of Cell Cycle and Gap 1 Phase Length Estimate |
| 指導教授: |
舒宇宸
Shu, Yu-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 細胞週期 、G1期長度 、SH-SY5Y 、HEK293 、蒙地卡羅法 、生物影像處理 |
| 外文關鍵詞: | cell cycle, G1 time, SH-SY5Y, HEK293, Monte Carlo method, image processing |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞週期指能持續分裂的真核細胞從一次有絲分裂結束後生長,再到下一次分裂結束的循環過程。細胞週期一般可分為四個階段:G1(DNA合成前期)、S(DNA合成期)、G2 (DNA合成後期)、M(分裂期),不同種的細胞其週期的長短各不相同。本研究中,我們透過螢光泛素細胞週期標誌物(Fucci)技術標記在G1期及S/G2/M期的細胞,利用蛋白質震盪現象,使細胞處於G1期會發出紅色螢光,而處於G2/S/M期時則會發出綠色螢光。在每個觀測時間紀錄紅色螢光及綠色螢光影像,並透過影像處理計算實驗影像中G1期及S/G2/M期細胞數。用數值模擬分析細胞分裂模型,其中關鍵的想法是利用細胞在G1期比例隨時間的變化來估計細胞週期與G1期長度,並以蒙地卡羅法與最小平方法校正估計值,求出估計週期與實際週期之間的校正函數,最後用兩種不同細胞SH-SY5Y、HEK293驗證此數學模型。細胞週期的研究與癌症研究密切相關,若此模型估計具有高準確度,未來可以應用在癌症相關研究及生物醫學藥物研究。
The cell cycle is defined as the period between successive divisions of a cell. During this period, the genetic material will be completely duplicated, and the duplicates must be distributed equally and exactly to two daughter cells. The cell cycle consists of four distinct phases: G1 phase, S phase (synthesis), G2 phase (collectively known as interphase) and M phase (mitosis). In this study, we use Fucci technology to mark cells and distinguish the cells in G1 phase from other phases. Our goal is to estimate the cell cycle time by the frequency of the ratio of cells in G1 phase, which is calculated by image processing. We present a model of cell progression and find the formula between the estimated cycle time and actual cell cycle time by numerical simulation and regression analysis.
[1] Eukaryotic cell division: Mitosis. https://biologydictionary.net/cell-division/.
[2] Phases of cell cycle. https://biology.tutorvista.com/cell/cell-cycle.html.
[3] Facchin F Bianconi E, Piovesan A. An estimation of the number of cells in the human body. Ann Hum Biol., 40(6):471, 2013.
[4] Elaine S. Marshall Wayne R. Jose Britta Basse, Bruce C. Baguley. A mathematical model for analysis of the cell cycle in human tumours. Journal of Mathematical Biology, 47:295–312, 2003.
[5] Paolo Ubezio Britta Basse. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Bulletin of Mathematical Biology, 69:1673–1690, 2007.
[6] Oredsson S Holst U. Larsson S, Johansson M. A markov model approach shows a large variation in the length of s phase in mcf-7 breast cancer cells. Cytometry A., 65(1):15–25, 2005.
[7] ToshifumiMorimura AsakoSakaue-Sawano, HiroshiKurokawa. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, Volume 132,Issue 3:487–498, 2008.
[8] B.A.EdgarMillasseau N.Zielke. Fucci sensors: powerful new tools for analysis of cell proliferation. WIREs Dev Biol, 4:469–487, 2015.
[9] P.C.L John. The Cell Cycle. Cambridge University press, 1981.
[10] Langford D. Kovalevich J. Considerations for the use of sh-sy5y neuroblastoma cells in neurobiology. Methods Mol Biol., 1078:9–21, 2013.
[11] ATCC,CRL-2266™. SH-SY5Y.
[12] A. Manniello P. Romano. SH-SY5Y. HyperCLDE.
[13] Francesc Gòdia Laura Cervera, Sonia Gutiérrez. Optimization of hek 293 cell growth by addition of non-animal derived components using design of experiments. BMC Proc, 5(Suppl 8):126, 2011.
[14] Pamela Mettner Manisha Sahni, Shelley Wilcox. HEK 293 Cell Growth and Virus Production in EX-CELL® 293 Serum-Free Medium. SAFC.
校內:2019-07-31公開