| 研究生: |
翁維隆 Weng, Wei-Lung |
|---|---|
| 論文名稱: |
驅動模式對供需式壓電微噴嘴噴注特性之影響 Effects of Driving Schemes on Injection of a Drop-on-Demand Type Piezoelectric Micro-injector |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 壓電式 、微噴嘴 、供需式 、連續式 、驅動波形 、液滴 、凸塊 |
| 外文關鍵詞: | piezoelectric, micro-injector, drop-on-demand, continuous, driving scheme, droplet, inner block |
| 相關次數: | 點閱:61 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討具凸塊壓電式微噴嘴之噴注特性,噴嘴的設計有A-1型、A-2型、A-3型和A-4型等四型,各型微噴嘴之腔體高度分別為1100μm、450μm、225μm和225μm,其中A-4型微噴嘴乃在腔體中加入一凸塊。研究工作分為兩部份:第一部份探討連續式噴注之最不穩定擾動頻率及液柱破裂長度,第二部份探討供需式噴注之特性。驅動模式分為兩大類,第一類驅動波形為連續方波,探討在不同的腔體幾何形狀下,當增加進口水柱高度或是提高驅動電壓時,對於微噴嘴所噴發液柱之破裂長度、單粒徑液滴間距、速度和粒徑的影響,並觀察單粒徑液滴噴發之動態演變過程。第二類驅動波形為功能性波形,此部分探討在不同的功能性驅動波形和電壓下,各型腔體微噴嘴之噴發特性,以達成控制單粒徑液滴噴發之目的。研究結果顯示,在連續式噴注之條件下,當壓電片擾動頻率接近液柱不穩定模態頻率時,液柱的破裂長度會縮短。當液柱速度增加時,液柱的慣性力也隨之增加,使得液柱破裂長度變長。當液柱速度從2m/s提升至4.28m/s時,液柱最不穩定擾動頻率與文獻所算出之理論值相符。在供需式噴注之實驗中,若採用連續方波驅動,當減少微噴嘴之腔體高度時,DOD噴發之驅動頻率會降低,此乃是因為腔體高度減少,使得液體補充機制變慢。實驗亦發現,增加進口水柱高度對於提升A-3型微噴嘴之噴發效用並不顯著。在進口水柱高度為3.2cm下,A-4型微噴嘴所噴發之液柱破裂長度、單粒徑液滴速度、粒徑和液滴間距,相對於A-3型微噴嘴分別增加82μm、0.5m/s、29μm和125μm,此結果指出,在此條件下若在腔體加入一凸塊可以增加單粒徑液滴速度。在功能性波形驅動下,比較Every-4至Every-8波形所噴發之結果顯示,A-3型和A-4型微噴嘴都是在Every-4波形驅動下最穩定,單粒徑液滴粒徑也較平均。若採用Every-4波形作驅動,探討不同的Vpp1和Vpp2比例對於液體噴發之影響,發現當Vpp1減小時,可利用增加Vpp2來彌補噴發能量不足的問題,相對的,Vpp2值減小時也能利用增加Vpp1的值,彌補噴發能量之不足。因此,我們可以利用調整功能性驅動波形的Vpp1和Vpp2,以控制微噴嘴之噴注特性。
The injection performance of piezoelectric micro-injector with inner block was investigated in this research. The design of the micro-injectors are A-1 to A-4 types with the chamber height of type A-1, A-2, A-3 and A-4 being 1100μm, 450μm, 225μm and 225μm, respectively, and type A-4 micro-injector with inner block. This research is to investigate the most unstable disturbance frequency of the continuous jet and the breakup length of the liquid column. Performance of Drop-on-Demand (DOD) type injection are also investigated. The driving schemes of the injector consist of two categories. The first driving scheme is the waveform of the continuous square wave, and the second one is the functional waveform. Results show that the breakup length of liquid column is shortened as the PZT disturbance frequency approach the unstable frequency in the condition of continuous injection. It is also found that the breakup length increases as the velocity of liquid column increases due to the increased inertial force of the liquid column. The most unstable disturbance frequency is consistent with the theoretical value for the velocity of liquid column ranging from 2m/s to 4.28m/s. The driving frequency of DOD injection decreases as the chamber height of the micro-injector is reduced because of the slower refilling mechanisms under such condition. Results also show that the increase of the pressure head of the liquid column offers little effect on the performance of type A-3 micro-injector. However, the breakup length, the velocity and size of droplets, the distance between droplets for the case of type A-4 micro-injector increase 82μm, 0.5m/s, 29μm and 125μm, respectively, as comparing to A-3 case if the pressure head of the liquid column is 3.2cm. It indicates that the inner block in the chamber results in the increase of droplet velocity under sucn condition. As for the driving scheme of functional waveform type A-3 and type A-4 micro-injectors perform better and can produce uniform droplets under the driving waveform of Every-4 scheme Results also show that the increase of the Vpp2 may compensate the injection energy as Vpp1 decreases under the driving scheme of Every-4. Hence we may adjust Vpp1 and Vpp2 to control the injection performance of the micro-injector using the functional driving scheme.
[1]W. L. Buehner, J.D. Hill, T. H. Williams and J. W. Woods, “Application of Ink Jet Technology to a Word Processing Output Printer,” IBM Journal of Research and Development, Vol.21,No.1, pp.2-9, 1977.
[2]Swayer Fuller and Jospher Jacobson, “Ink Fabricated Nano Particle,” MEMS, IEEE Microelectromech. Syst. Conf., pp.138-141, 2000.
[3]Richard G. Sweet, “High Frequency Recording with Elecrostatically Deflected Ink Jet,” The Review of Scientific Instruments, Vol.36, pp.131-136, 1965.
[4]H. C. Lee, “Droplet Formation in a Liquid Jet,” IBM J. Res. Develop., pp364-369, July 1974.
[5]W. T. Pimbley, “Droplet Formation form a Liquid Jet :Alinear One-Dimensional Analysis Considered as a Boundary Value Problem,” IBM J. Res. Develop., pp. 148-156, March 1976.
[6]E. K. Dabora, “Production of Mondisperse Sprays,” http:rsi.aip.org/rsi/copyright.jsp, Vol.38, Number 4, 1967.
[7]G. Brenn, T. Helpio and F. Dirst, “A new apparatus for the producton of monodisperse sprays at high flow rates,” Chemical Engineering Science, Vol.52, No.2., pp237-244, 1997.
[8]F. C. Lee, “PZT Printing Applications, Technologies, New Devices,” Ultrasonic Symposium, IEEE, pp.693-697, 1988.
[9]W. R. Whel, “The Present State of the Art,” Compeuro 89-3rd Annual European Computer Conference Hamburg, West Germany, pp.46-52, May 1989.
[10]T Lauell, L Wallman and J Nilsson, “Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handing,” J. Micromech. Microeng., Vol.9, pp.369-376, 1999.
[11]B.de Heij, B Van derschoot, Hu Bo, J. Hess and N.F. de Rooij, “Characterisation of a fL droplet generator for inhalation drug therapy,” Sensors and Actuators, Vlo.85, pp.430-434. 2000.
[12]Songmei Yuan*, Zhaoying Zhou, Guohui Wang and Canggeng Liu, “MEMS-based piezoelectric array microjet,” Microelectronic Engineering, Vlo.66, pp.767-772, 2003.
[13]Gőkhan Percin, Laurent Levina and Butrus T. Khuri-Yahub, “Piezoelectrically actuated droplet ejector,” Rev Sci. Instrum, Vlo.68, December 1997.
[14]Gőhan Percin, Gőksenin G. Yaralioglu and Butrus T. Khuri-Yakub, “Micromachined droplet ejector arrays,” Review of Scientific Instruments, Vol.73, Number 12, December 2002.
[15]Chris P. Steinert, ingo Goutier, Oliver Gutmann, Hermann Sandmaier, Martina Daub, Base Heij and Roland Zengerle, “A highly parallel picoliter dispenser with an integrated novel capillary channel structure,” Sensors and Actuators, Vol.116, pp.171-177, 2004.
[16]A-S Yang, C-H Cheng, C-T Lin, “Investigation of droplet-ejection characteristics for a piezoelectric inkjet printhead,” Jornal Mechanical Engineering Science, Vol.220, pp.435-445, 2006.
[17]J. M. Meacham, M. J. Varady, F. L. Degertekin, A. G. Fedorov, “Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualiztion and scaling,” Physics of fluids, Vol.17, October 2005.
[18]曾俊欽, “推拉式壓電噴嘴之製作及噴霧特性,” 國立成功大學航空太空工程研究所碩士論文, 2007.
[19]葉吉田, “噴墨列印技術在電子工業之應用,” 財團法人工業技術研究院.
[20]方昱仁, “單體單噴孔壓電致動式噴液裝置設計與製造,” 國立台灣大學機械工程研所碩士論文, 2002.
[21]B. David, J. Donald and Wallace, Hayes, “Solder Jet Technology Update,” Proceedings, ISHM’97. 1997.
[22]J. Hayes Donald, B. Wallace David and W. Royall Cox, “MicroJet Printing of Solder and Polymers multi-chip Modules and Chip-Scale Packages,” IMAPS’99. 1999.
[23]H. Le, “Progress and Trends in Ink-jet Printing Technology,” Journal of Imaging Science and Technology, Vol.42, No.1, pp.49-p62, January/February 1998.
[24]林郁欣, “整合微鉑溫度感測器於熱泡致動器之發展研究,” 國立成功大學航空太空工程學系碩士論文, 2003.
[25]S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A Low Power, Small Electrostatically-Driven Commercial Inkjet Head,” the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, IEEE, pp.63-68, 1998.
[26]S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head,” the Thirteenth Annual International Conference on Micro Electro Mechanical Systems, IEEE, pp.793-798, 2000.
[27]D.Huang and E. S. Kim, “Micromachined Acoustic-Wave Liquid Ejector,” IEEE Journal of Microelectromechanical Systems, Vol.10, Issue 3, 2001.
[28]B. D. Bogy, F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices,” IBM J. Res. Develop., Vol.28, pp.314-321, 1984.
[29]周卓明, “壓電力學,” 全華科技圖書股份有限公司, 1992年初版.
[30]K. B Albaughb, E. P. Cade and D. H. Rasmussen, “Mechanisms Of Anodic Bonding Of Silicon To Pyrex Glass,” Solid-State Sensor and Actuator Workshop, Technical Diqest., IEEE, 1998.