簡易檢索 / 詳目顯示

研究生: 陳品慈
Chen, Pin-Tzu
論文名稱: 結合腦功能連結度與機器學習分辨注意力不足過動症患者及正常人之靜息態功能性磁振造影
Differentiation between Resting-State fMRI data from ADHD and Normal Subjects Based on Functional Connectivity and Machine Learning
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 58
中文關鍵詞: 注意力不足過動症靜止狀態功能性核磁共振造影大腦功能性之相關性機器學習
外文關鍵詞: ADHD, resting state, fMRI, functional connectivity, classifiers
相關次數: 點閱:115下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 注意力不足過動症(attention-deficit/hyperactivity disorder, ADHD)是目前學齡兒童最普遍的發展性神經行為障礙之一,也是兒童精神科常見的疾患,通常會持續到青春期或成年。患有ADHD之病患在學業或社會功能上常會出現問題,並可能同時伴隨情緒障礙、學習障礙、強迫、焦慮等等問題,若不加以治療,未來可能導致自卑、人格異常、人際障礙,甚至反社會行為,因此若能夠早期發現早期治療,相信對ADHD患者而言絕對是一大幫助。目前ADHD的診斷主要於臨床透過精神疾病診斷與手冊,結合父母或老師的主觀意見來診斷;另外,根據神經造影技術所提供的客觀結果顯示ADHD患者及正常人之大腦結構存在相當的差異性;而在各種大腦功能性研究上也在特定區域呈現活動異常。

    在此篇論文中,我們經由受試者在靜止狀態下之功能性磁振造影,分析其大腦功能性之相關性,並以統計方法發現ADHD患者及正常人間在特定大腦區域上之差異,利用其特徵結合機器學習,發展出可有效分辨ADHD患者及正常人之系統。本實驗已實際應用在七十三位ADHD病患與七十六位健康受試者上,並發現在前扣帶皮層、後扣帶皮層、腹內側額葉、小腦、動作皮質區及顳葉與全腦之大腦功能性相關性可提供有效特徵於區分ADHD患者及正常人,測試各式分類器後在非線性分類器可達到87%之準確率。

    Attention-deficit/hyperactivity disorder (ADHD) is a kind of neuropsychiatric disorder which is quite common in childhood, with an estimated prevalence of 5-8%, and often persists into adolescence and adulthood. It is characterized by developmentally inappropriate symptoms of inattention, impulsively, motor over-activity and restlessness that interfere with normal functioning in various settings.

    In this thesis, we analyze the functional connectivity of resting state fMRI and used statistical techniques to discover the differences in some brain areas between ADHD and normal subjects. Combine the functional connectivity and machine learning methods to identify the two groups. This study has applied to the datasets of 73 children with ADHD and 76 normal children. Based on prior researches, anterior cingulate cortex (ACC), posterior cingulated cortex (PCC) and ventromedial prefrontal cortex (vmPFC) have been well confirmed. Moreover, we have also found differences in cerebellum, motor cortex and temporal lobe between ADHD and normal humans. These 7 brain areas truly supply useful features in ADHD classification. Experimental results showed a correct classification rate of 87% by using nonlinear classifier with the validation which is half for training and half for testing. As a result, using functional connectivity of resting-state fMRI as features in classifiers do has the ability to evaluate ADHD.

    摘 要 I ABSTRACT II List of Figures V List of Tables VI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 fMRI 2 1.3 ADHD 3 1.4 Related work 7 1.4.1 Functional connectivity related 7 1.4.2 ADHD related 8 1.4.3 ADHD classification 8 1.5 Thesis Organization 9 Chapter 2 Methods 10 2.1 Datasets 10 2.2 MRI scanning 11 2.3 Preprocessing 12 2.4 Feature Extraction 13 2.4.1 Functional connectivity 13 2.5 Classification 28 2.5.1 Principle Component Analysis (PCA) 28 2.5.2 Classifiers 29 2.5.3 Algorithm 34 Chapter 3 Results 42 3.1 Classifier Performance 42 3.2 Performance of ADHD classification 44 Chapter 4 Discussion 50 Chapter 5 Conclusion and Future Work 53 5.1 Conclusions 53 5.2 Future work 53 References 54

    Ac r N., “Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm,” Neural Computing & Applications, vol. 14, pp. 299-309, 2005.
    ADHD 200 sample. [Online]. Available: http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html
    AFNI. Available: http://afni.nimh.nih.gov/afni
    Biederman J., “Impact of comorbidity in adults with attention deficit/hyperactivity disorder,” Journal of Clinical Psychiatry, 2004.
    Biederman J., “Attention-deficit/hyperactivity disorder: a selective overview,” Biological psychiatry, vol. 57, pp. 1215-1220, 2005.
    Biederman J., & Faraone S. V., “Epidemiology and Diagnosis,” Lancet, vol. 366, pp. 237-248, 2005.
    Biederman J., Faraone S. V., Spencer T., Wilens T., Norman D., Lapey K., et al., “Patterns of psychiatric comorbidity, cognition, and psychosocial functioning in adults with attention deficit hyperactivity disorder,” American Journal of Psychiatry, vol. 150, p. 1792, 1993.
    Biswal B., Yetkin F. Z., Haughton V. M., & Hyde J. S., “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnetic Resonance in Medicine, vol. 34, pp. 537-541, 1995.
    Bluhm R. L., Osuch E. A., Lanius R. A., Boksman K., Neufeld R. W. J., Theberge J., et al., “Default mode network connectivity: effects of age, sex, and analytic approach,” Neuroreport, vol. 19, p. 887, 2008.
    Broyd S. J., Demanuele C., Debener S., Helps S. K., James C. J., & Sonuga-Barke E. J. S., “Default-mode brain dysfunction in mental disorders: a systematic review,” Neuroscience & Biobehavioral Reviews, vol. 33, pp. 279-296, 2009.
    Bush G., “Attention-deficit/hyperactivity disorder and attention networks,” Neuropsychopharmacology, vol. 35, pp. 278-300, 2009.
    Cao Q., Zang Y., Sun L., Sui M., Long X., Zou Q., et al., “Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study,” Neuroreport, vol. 17, p. 1033, 2006.
    Castellanos F. X., Margulies D. S., Kelly C., Uddin L. Q., Ghaffari M., Kirsch A., et al., “Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder,” Biological Psychiatry, vol. 63, pp. 332-337, 2008.
    Cherkassky V. L., Kana R. K., Keller T. A., & Just M. A., “Functional connectivity in a baseline resting-state network in autism,” Neuroreport, vol. 17, pp. 1687-1690, 2006.
    Cordes D., Haughton V. M., Arfanakis K., Carew J. D., Turski P. A., Moritz C. H., et al., “Frequencies contributing to functional connectivity in the cerebral cortex in" resting-state" data,” American Journal of Neuroradiology, vol. 22, p. 1326, 2001.
    Cortes C., & Vapnik V., “Support-vector networks,” Machine Learning, vol. 20, pp. 273-297, 1995.
    De Luca M., Beckmann C., De Stefano N., Matthews P., & Smith S., “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage, vol. 29, pp. 1359-1367, 2006.
    DSM-IV-TR, Diagnostic and Statistical Manual of Mental Disorders, 4th Edition-Text Revision ed. Washington, DC: American Psychiatric Association, 2000.
    Faraone S. V., & Biederman J., “What is the prevalence of adult ADHD? Results of a population screen of 966 adults,” Journal of Attention Disorders, vol. 9, p. 384, 2005.
    Faraone S. V., Biederman J., & Mick E., “The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies,” Psychological Medicine, vol. 36, pp. 159-165, 2006.
    Fransson P., “Spontaneous low frequency BOLD signal fluctuations: An fMRI investigation of the resting state default mode of brain function hypothesis,” Human Brain Mapping, vol. 26, pp. 15-29, 2005.
    Fransson P., & Marrelec G., “The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis,” Neuroimage, vol. 42, pp. 1178-1184, 2008.
    FSL. Available: www.fmrib.ox.ac.uk
    Ghasemi M., Mahloojifar A., Zarei M., & Ferdosi-makan A., “Changes of localized spontaneous activity and connectivity in resting state fMRI data of Parkinson disease,” 2010, pp. 325-329.
    Golub G., “Numerical methods for solving linear least squares problems,” Numerische Mathematik, vol. 7, pp. 206-216, 1965.
    Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., et al., “Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus,” Biological Psychiatry, vol. 62, pp. 429-437, 2007.
    He Y., Wang L., Zang Y., Tian L., Zhang X., Li K., et al., “Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study,” Neuroimage, vol. 35, pp. 488-500, 2007.
    Jolliffe I., “Principal Component Analysis Springer-Verlag,” New York, 1986.
    Kendall M. G., “Rank correlation methods,” 1948.
    Kennedy D. P., & Courchesne E., “The intrinsic functional organization of the brain is altered in autism,” Neuroimage, vol. 39, pp. 1877-1885, 2008.
    Langleben D. D., Acton P. D., Austin G., Elman I., Krikorian G., Monterosso J. R., et al., “Effects of methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder,” Journal of Nuclear Medicine, vol. 43, p. 1624, 2002.
    Liang M., Zhou Y., Jiang T., Liu Z., Tian L., Liu H., et al., “Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging,” Neuroreport, vol. 17, p. 209, 2006.
    Lowe M., Mock B., & Sorenson J., “Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations,” Neuroimage, vol. 7, pp. 119-132, 1998.
    Lui S., Ouyang L., Chen Q., Huang X., Tang H., Chen H., et al., “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” Journal of Magnetic Resonance Imaging, vol. 27, pp. 1214-1220, 2008.
    Magistretti P. J., & Pellerin L., “Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging,” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 354, p. 1155, 1999.
    McConnell Brain Imaging Centre. Available: http://www.bic.mni.mcgill.ca/ServicesAtlases/
    Nair J., Ehimare U., Beitman B., Nair S., & Lavin A., “Clinical review: evidence-based diagnosis and treatment of ADHD in children,” Missouri medicine, vol. 103, p. 617, 2006.
    NIMH. Attention Deficit Hyperactivity Disorder. Available: National Institute of Mental Health: http://www.nimh.nih.gov/health/publications/adhd/complete‐publication.shtml
    NITRC. Available: www.nitrc.org
    Ogawa S., Lee T. M., Nayak A. S., & Glynn P., “Oxygenation sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magnetic Resonance in Medicine, vol. 14, pp. 68-78, 1990.
    Raichle M. E., & Snyder A. Z., “A default mode of brain function: a brief history of an evolving idea,” Neuroimage, vol. 37, pp. 1083-1090, 2007.
    Rumelhart D. E., Hintont G. E., & Williams R. J., “Learning representations by back-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.
    State Key Laboratory of Cognitive NeuroScience and Learning. Available: http://www.resting-fmri.sourceforge.net
    Tian L., Jiang T., Liang M., Zang Y., He Y., Sui M., et al., “Enhanced resting-state brain activities in ADHD patients: a fMRI study,” Brain and Development, vol. 30, pp. 342-348, 2008.
    Tian L., Jiang T., Wang Y., Zang Y., He Y., Liang M., et al., “Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder,” Neuroscience Letters, vol. 400, pp. 39-43, 2006.
    Uddin L. Q., Clare Kelly A., Biswal B. B., Xavier Castellanos F., & Milham M. P., “Functional connectivity of default mode network components: correlation, anticorrelation, and causality,” Human Brain Mapping, vol. 30, pp. 625-637, 2009.
    Uddin L. Q., Kelly A., Biswal B. B., Margulies D. S., Shehzad Z., Shaw D., et al., “Network homogeneity reveals decreased integrity of default-mode network in ADHD,” Journal of Neuroscience Methods, vol. 169, pp. 249-254, 2008.
    Voeller K. K. S., “Attention-deficit hyperactivity disorder (ADHD),” Journal of child neurology, vol. 19, p. 798, 2004.
    Wang L., Zang Y., He Y., Liang M., Zhang X., Tian L., et al., “Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI,” Neuroimage, vol. 31, pp. 496-504, 2006.
    Wideman G. (2005). Orientation and Voxel-Order Terminology: RAS, LAS, LPI, RPI, XYZ and All That. Available: http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm
    Yu-Feng Z., Yong H., Chao-Zhe Z., Qing-Jiu C., Man-Qiu S., Meng L., et al., “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain and Development, vol. 29, pp. 83-91, 2007.
    Zang Y., Jiang T., Lu Y., He Y., & Tian L., “Regional homogeneity approach to fMRI data analysis,” Neuroimage, vol. 22, pp. 394-400, 2004.
    Zhou Y., Liang M., Tian L., Wang K., Hao Y., Liu H., et al., “Functional disintegration in paranoid schizophrenia using resting-state fMRI,” Schizophrenia Research, vol. 97, pp. 194-205, 2007.
    Zhu C. Z., Zang Y. F., Cao Q. J., Yan C. G., He Y., Jiang T. Z., et al., “Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder,” Neuroimage, vol. 40, pp. 110-120, 2008.
    Zou Q. H., Zhu C. Z., Yang Y., Zuo X. N., Long X. Y., Cao Q. J., et al., “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF,” Journal of Neuroscience Methods, vol. 172, pp. 137-141, 2008.
    Zwi M., Ramchandani P., & Joughin C., “Evidence and belief in ADHD,” BMJ, vol. 321, p. 975, 2000.

    下載圖示 校內:2014-08-30公開
    校外:2014-08-30公開
    QR CODE