簡易檢索 / 詳目顯示

研究生: 蔡雯夙
Tsay, Wen-Su
論文名稱: 探討水稻在塩害逆境下細胞死亡及轉譯起始因子之調控
Induction of cell death and expression of eukaryotic translation initiation factor 5A in rice by salt stress.
指導教授: 黃定鼎
Huang, Dinq-Ding
黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 92
中文關鍵詞: 塩害水稻轉譯起始因子細胞死亡
外文關鍵詞: rice, cell death, salt stress, eukaryotic translation initiation factor 5A
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   土壤中過多的塩分會影響植物的生長及發育。在遭受塩害逆境時,由於細胞膨壓的降低及根部吸水的障礙,引起植物細胞的生長受到抑制。然而對於塩害影響水稻根部細胞之生理層次及分子機制仍不甚清楚。
      本實驗以水稻作為研究材料,探討塩害逆境經由何種訊息傳遞路徑,導致根尖細胞發生細胞死亡現象,進而影響根部生長的生理及分子機制。結果顯示,以150 mM NaCl處理48小時,即明顯抑制水稻根部的生長;而450 mM NaCl處理會引起水稻根尖細胞發生DNA斷裂(degradation),預先外加10 mM CaCl2可使此現象消失,顯示塩害可能藉由造成離子不平衡逆境,誘導水稻根部進行計畫性細胞死亡現象。若在450 mM NaCl處理之前先處理CaCl2、蛋白質去磷酸酶抑制劑-cantharidin、sodium orthovanadate(Na3VO4)、phenylarsine oxide (PAO),可部份抑制塩害所造成根部尖端細胞死亡;前處理抑制胞器鈣離子釋放抑制劑-ruthenium red(RR),則增加塩害造成根尖端細胞死亡現象。因此推測蛋白質去磷酸酶及胞器鈣離子,可能參與塩害所誘導水稻根尖細胞死亡的訊息傳遞路徑。
      目前相關研究指出,在阿拉伯芥及酵母菌中大量表現轉譯起始因子BvelF1A,能增進對塩害逆境的抗性,然而,在水稻轉譯起始因子eIF5A功能的研究瞭解仍相當有限,因此本研究主要探討水稻兩個轉譯起始因子eIF5A(OseIF5A-3及OseIF5A-4)基因所具有的特性。以南方墨點法分析顯示兩個OseIF5As基因皆為單一基因。以北方墨點法分析結果顯示,OseIF5As 基因在各個組織皆有表現,但在成熟葉中累積量明顯較高。在重金屬與塩害處理懸浮細胞結果顯示,OseIF5A-3 的mRNA表現量會受誘導增加,若以塩害處理水稻根部,OseIF5A-1、 OseIF5A-2及OseIF5A-3的mRNA表現量皆會受誘導增加,因此顯示OseIF5As 參與調控塩害訊息傳遞路徑的過程。進一步轉殖阿拉伯芥大量表現不完全的(truncated)AteIF5A-2時,50mM NaCl處理即可明顯抑制轉殖株種子的萌發,因此認為eIF5A影響種子對塩害逆境的耐受力;此結果也推測水稻和阿拉伯芥eIF5A在塩害逆境所扮演的功能可能有其相似性。

      Excess mineral salts in the soil could affect the growth and development of plants. Under salt stress, the growth of plant cells is inhibited due to reduced cell tugor and water uptakes. However, the mechanisms beneath such phenomenon in rice roots are not well understood.
      In this study, rice root-tip cells were used to study the signal transduction pathways underlying salt-induced cell death. Root growth inhibition was apparently observed when treating 150 mM NaCl for 48 hours. DNA degradation could be detected in root-tip cells under 450 mM NaCl treatment whereas pretreatment of 10 mM CaCl2 could suppress such effects. These results indicated that salt induced programmed cell death could be a result of ion disequilibrium. Besides CaCl2, when the roots was incubated with protein phosphatase inhibitors prior to 450 mM NaCl treatment, the salt-induced cell death could also be partially abolished. However, pretreatment of intracellular Ca2+ flux blocker increased salt-induced cell death. Therefore, calcium flux and protein phosphatases may be involved in sal-induced cell death of rice root-tip cells.
      In yeast and Arabidopsis, over-expression of translation initiation factor eIF1A (BvelF1A) increases salt tolerances. Therefore, we also tried to isolate their homologues from rice. In the present study, we have cloned two eIF5A homologues from rice. Both genes are single-copy in rice genome. Whereas the expression of both genes were detectable in every tissues, predominant accumulation of both mRNA in aged leaves was observed. While the expression of OseIF5A-3 could be induced after salt and heavy-metal stress in rice suspension cells, the increment of OseIF5A-1, OseIF5A-2, and OseIF5A-3 transcripts were observed in rice root treated by salt. Such results suggested that OseIF5A genes may play a role in salt signaling pathway.
      Finally, over-expression of a AteIF5A-2 in its truncative form inhibited seed germination under 50 mM NaCl. It is possible that eIF5A lead to the adaptation to the salt stress. Thus, these results suggested that the role of eIF5A is very similar in both Arabidopsis and rice.

    誌 謝 1 摘 要 2 ABSTRACT 4 圖目錄 8 表目錄 10 縮寫符號對照表 11 前 言 12 一、塩害對植物生理發育的影響: 12 二、塩害誘導細胞死亡現象 13 三、塩害逆境引發訊息傳遞路徑 14 四、轉譯起始因子(translation initiation factor)5A功能相關研究 17 研究目的 20 材料與方法 21 水稻懸浮培養細胞之建立 21 水稻植株的培養 22 水稻根部的培養 22 水稻根部細胞DNA degradation純化 23 DNA 墨點轉印 24 南方墨點轉漬法(Southern blot) 25 北方墨點轉漬法(Northern blot) 27 序列比對 30 阿拉伯芥基因轉殖 32 結 果 35 處理NaCl對水稻根部生長之影響 35 處理NaCl誘導水稻根部細胞死亡 35 CaCl2、ruthenium red前處理,對NaCl誘導水稻根部細胞死亡影響.. 35 蛋白質去磷酸激酶抑制劑前處理,對NaCl誘導水稻根部細胞死亡影響 35 塩害逆境誘導水稻根部細胞DNA斷裂(degradation) 36 水稻OseIF5A核酸與胺基酸序列分析 36 以南方墨點法分析水稻基因組OseIF-5A的拷貝數(copy number) 37 以北方墨點法探討OseIF-5A基因在組織表現差異性 38 以北方墨點法探討塩害逆境對OseIF-5A基因表現之影響 39 以北方墨點法探討ABA處理對OseIF-5A基因表現之影響 39 以北方墨點法探討重金屬逆境對OseIF-5A基因表現之影響 39 Truncated AteIF5A-2轉殖阿拉伯芥功能分析 40 討 論 42 參 考 文 獻 51 附 錄 90 自 述 92

    Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
    Amtmann A. and Sanders D. (1999) Mechanisms of Na+uptake by plant cells. Adv.Bot.Res. 29:76.
    Andrew F.B. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physio.124:1540-1547.
    Antoine D., Valerie D., Nathalie M. and Patrick G. (2000) Plant programmed cell death:A common way to die. Plant Physiol. Biochem.38:647-655.
    Apse M.P., Aharon G.S.,Snedden W.A. and Blumwald E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiporter in Arabidopsis. Sci. 285:1256.
    Asai T., Stone J.M., Heard J.E., Kovtrn Y. and Yorgey P. (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:823-1835.
    Beers E.P. and McDowell J.M. (2001) Regulation and execution of programmed cell death in response to pathogens,stress and development. Curr.Opin.Plant Biol. 4:561-567.
    Benne R., Brown-Luedi M.L. and Hershey J.W. (1978) Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J. Biol. Chem. 253: 3070-7.
    Berridge M., Lipp P. and Bootman M.D. (2000) The versatility and university of calcium signaling. Nature Rev.Mol. Cell Biol. 1:11.
    Blumwald, E. (2000) Sodium transport and salt tolerance in plants.Curr. Opin. Cell Biol. 12, 431–434.
    Boyer, J.S. (1982) Plant productivity and environment. Sci. 218, 443–448.
    Caraglia M., Marra M., Giuberti G., D’Alessandro A.M., Budillon A., Prete S.D., Lentini A., Beninati S., and Abbruzzese A. (2001) The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis. Amino Acids 20:91-104.
    Chamot D. and Kuhlemeier C. (1992) Differential expression of genes encoding the hypusine-containing translation initiation factor, eIF-5A, in tobacco. Nucleic Acids Res. 20: 665-669.
    Cheeseman J.M. (1988) Mechanisms of salinity tolerance in plants. Plant Physiol. 87:547-550.
    Chen K.Y. and Liu A.Y. (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol.Signals. 6:105-109
    Chen Z. P., YanY. P., Ding Q. J. , Knapp S., Potenza, J. A., Schugar J. A. and Chen K. Y. (1996) Effects of inhibitors of deoxyhypusine synthase on the differentia tion of mouse neuroblastoma and erythroleukemia cells. Cancer Lett. 105: 233–239.
    Chou W.C., Huang Y.W.,Tsay W.S.,Chiang T.Y.,Huang D.D. and Huang H.J. (2004) Expression of genes encoding the rice translation initiation factor,eIF5A, is involved in developmental and environmental responses. Physiologia plantarum 121(1):50-57.
    Colmer T.D., Fan T.W-M., Higashi R.M. and Lauchli A. (1994) Intracellular pH of Sorghum bicolor root tips:An in vivo 31p NMR study. J Exp Bot 45:1037-1044.
    Covic L., Silva N.F. and Lew R.R. (1999) Functional characterization of ARAKIN(ATMEKK1):a possible mediator in an osmotic stress response pathway in higher plants. Biochim.Biophys. Acta.1451:242.
    Cramer G.R., Lynch J., Lauchli A. and Epstein E. (1987)Influx of Na+,K+,and Ca2+ into roots of salt-stressed cotton seedlings. Effects of supplemental Ca2+. Plant Physiol 83:510-516.
    Delisle G., Champoux M. and Houde M. (2001) Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol. 4:324-333.
    DeWald D.B., Torabinejad J., Jones C.A., Shope J.C.,Cangelosi A.R., Thompson J.E.,Prestwich G.D. and Hama H.(2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126:759-769.
    Dresselhaus T., Cordts S. and Lörz H. (1999) A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize. Plant Mol. Biol.39: 1063-1071.
    Drew M.C., He C.J. and Morgan P.W. (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123-127.
    Epstein E., Norlyn J.D.,Rush D.W.,Kingsbury R.W. and Kelly D.B. (1980) Saline culture of crops:a genetic approach. Science 210:399-404.
    Erickson R.O. and Sax K.B. (1956) Elemental growth rates of the primary root of Zea mays. Proceed Amer Philosoph Soc 100:487-498.
    Fu S.F., Chou W.C., Huang D.D. and Huang H.J. (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene,OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 43(8):958-963.
    Gassmann W. ,Rubio R. and Schroeder J.I. (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J.10:869.
    Greenway H. and Munns R.(1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149-190.
    Guan X.Y., Sham J.S., Tang T.C., Fang Y., Huo K.K. and Yang J.M. (2001) Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer. Cancer Res. 61, 3806–3809.
    Halfter U., Ishitani M. and Zhu J.K. (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc.Natl Acad.Sci. USA.97:3735.
    Hanauske-Abel, H. M., Park M.H., Hanauske, A. R. Popowicz, A. M. and Lalande M. (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim. Biophys. Acta 1221: 115–124.
    Hasegawa P.M., Bressan R.A., Zhu J.-K. and Bonnert H.J. (2000) Plant celllular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499.
    Helper P.K. and Wayne R.O. (1985). Calcium and plant development. Annu. Rev. Plant Physiol. 31:149-190.
    Hershey J.W. (1991) Translational control in mammalian cells. Annu Rev Biochem 60:717-755.
    Hirayama T., Ohto C., Mizoguchi T., and Shinozaki K. (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl.Acad.Sci.USA 92:3903-3907.
    Huh G.H., Damsz B., Matsumoto T.K., Raddy M.P., Rus A.M.,Ibeas J.I., Narasimhan M.L., Bressan R.A. and Paul M.H. (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. The Plant Journal 29(5)649-659.
    Hyun A.K. and John W. B. H. (1994) Effect of Initiation Factor eIF-5A Depletion on Protein Synthesis and Proliferation of Saccharomyces cerevisiae. The Journal of Biological chemistry 269:3934-3940.
    Ishitani M., Liu J., Halfter U., Kim C.S., Wei M. and Zhu J.K. (2000). SOS3 function in plant salt tolerance requires myristoylation and calcium-binding. Plant Cell 12, 1667–1677.
    Jansson B. P. M., Malandrin L. and Johansson H. E. (2000). Cell-cycle arrest in archaea by the hypusination inhibitor N1- guanyl-1,7-diaminoheptane. J. Bacteriol. 182: 1158–1161.
    Jenkins Z.A, Haag P.G. and Johansson H.E. (2001) Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5a with tissue-specific expression. Genomics 71:101-109.
    Jones A. (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225-230.
    Kafkafi U and Bernstein N. (1996) Root growth under salinity stress. In: Waisel Y, Eshel A and Kafkafi U (eds) Plant Roots- The Hidden Half. 2nd, Revised and Expanded New York:Marcel Dekker, Inc.,pp 435-445.
    Kang H.A. and Hershey J.W.B. (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269: 3934-3940.
    Kang H. A., Schwelberger H. G. and Hershey J. W. (1993) Translation initiation factor eIF-5A, the hypusine-containing protein, is phosphorylated on serine in accharomyces cerevisiae. J. Biol. Chem.268: 14750–14756.
    Katahira J., Siomi H., Ishizaki T., Uememoto T., Tanaka Y. and Shida H. (1994) A cellular protein which is coprecipitated with HTLV-I rex protein in the presence of the targer mRNA. Oncogene 9:3535-3544.
    Katsuhara M. and Shibasaka M. (2000) Cell death and growth recovery of barley after transient salt stress. J Plant Res. 113: 239-243.
    Katsuhara M. and Kawasaki T. (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of Barley roots. 37(2):169-173.
    Kemper W.M., Berry K.W. and Merrick W.C. (1976) Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Bα and M2Bβ. J. Biol. Chem.251:5551-5557.
    Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E.,LiwoszA., Eklof S., Till S., Bogre L., Hirt H., and Meskiene I. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK,SIMK. Plant Cell 12, 2247–2258.
    Klier H., T. Wohl C. Eckerskorn V. Magdolen and F. Lotts-peich. (1993) Determination and mutational analysis of the phos-phorylation site in the hypusine-containing protein Hyp2p. FEBSLett. 334: 360–364.
    Knight H. (2000) Calcium signaling during abiotic stress in plants. Int.Rev.Cytol.195:269-325.
    Kopka J., Pical C., Gray J.E. and Muller-Rober B. (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol.116:239-250.
    LaHaye P.A .and Epstein E. (1971) Calcium and salt toleration by bean plants. Physiol Plant 25:213-218.
    Liming X. and Jian K.Z. (2002) Plant Signal Transduction. 165-188.
    Liming X., Karen S.S. and Zhu J.K. (2002) Cell signaling during cold,drought and salt stress. 165-183.
    Lin C. C. and Kao C. H. (1995) NaCl stress in rice seedlings: the influence of calcium on root growth. Bot. Bull. Acad. Sin. 36: 41-45.
    Liu T., Staden J.V. and Cress W.A. (2000) Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max (L.)) roots. Plant Growth Regulation 30:49-54.

    Liu J., and Zhu J.K. (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945.
    Manual, 2nd edi. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Niu X., Bressan R.A., Hasgawa P.M. and Pardo J.M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiol. 109, 735–742.
    Maki K. (1997) Apoptosis-Like Cell death in barley roots under salt stress. Plant Cell Physiol 38(9)1091-1093
    Mattison C.P. and Ota I.M.(2000) Two protein tyrosine phosphatases,Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 14:1229.
    McCabe P.F., Levine A., Meijer P.J., Tapon N.A. and Pennell R.I. (1997) A programmed cell death pathway activatd in carrot cells cultured at low cell density. Plant J. 12:267-280.
    Meharg A.A. (1994) Intergrated tolerance mechanisms – constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell and Environment 17: 989-993.
    Mehta K.D., Leung D., Lefebvre L. and Smith M. (1990) The ANB1 locus of Saccharomyces cerevisiae encodes the protein synthesis initiation factor eIF-4D. J. Biol. Chem. 265: 8802-8807.
    Mendoza I.,Rubio F.,Rodriguez-Navarro A. and Pardo J.M. (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem.269:8792.
    Michael C.E, Nanette L., Joe H., Ronald A.D., George F.S., Mike T. and Stephen J.E. (1997) Human CPR (Cell cycle progression restoration) genes impart a Far- phenotype on yeast cells. Genetics 147:1063-1076.
    Niu X., Bressan R.A., Hasgawa P.M. and Pardo J.M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiol. 109:735-742.
    Pang J.H. and Chen K.Y. (1994) Global change of gene expression at late G1/S boundary may occur in human IMR-90 diploid fibroblasts during senescence. J.Cell. Physiol. 160: 531-538.
    Park M.H., Lee Y.B. and Liu A.Y. (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol. Signals. 6:105-109
    Park M. H., Lee Y. B. and Joe Y. A. (1997) Hypusine is essential for eukaryotic cell proliferation. Biol. Signals 6: 115–123.
    Park M. H., Joe Y. A., and Kang K. R. (1998). Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273: 1677–1683.
    Park M. H., Wolff E. C. and Folk J. E. (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4: 95–104.
    Park M.H., Wolff E.C. and Folk J.E. (1993) Is hypusine essential for eukaryotic cell proliferation? Trends Biochem. Sci. 18: 475-479.
    Park M. H., Wolff E. C., Lee Y. B. and Folk J. E. (1994). Antiproliferative effects of inhibitors of deoxyhypusine synthase: Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J. Biol. Chem. 269: 27827–27832.
    Park M.H.,Wollf E.C., Smit-McBride Z.,Hershey J.M. and Folk J.E. (1991) Comparison of the activities of variant forms of eIF-4D:the requirement for hypusine or deoxyhypusine. J.Biol.Chem.266:7988-7994
    Paul M.J.C., Henderson C.A., Jenkins Z.A., Smit-McBride Z., Wolff E.C., Hershey J.W., Park M.H. and Johansson H.E. (2003) Identification and characterization of eukaryotic initiation factor 5A-2. Eur. J. Biochem.270:4254-4263.
    Pennell R.I. and Lamb C. (1997) Programmed cell death in plants. Plant Cell 9:1157-1168.
    Popping B., Gibbons T. and Watson M.D. (1996) The Pisum sativum MAP kinase homolog (PsMAPK) rescurs the Saccharomyces cerevisiae HOG1 deletion mutant under conditions of high osmotic stress. Plant Mol.Biol 31:355.
    Posas F.,Chamber J.R.,Heyman J.A.,Hoeffler J.P., de Nadal E. and Arino J. (2000) The transcriptional response of yeast to saline stress. J.Biol.Chem.275:17249.
    Postel S. (1989) Water for agriculture:facing the limits. Worldwatch Paper 93. World-watch Institute, Washington DC.
    Rains D.W. and Epstein E (1967) Sodium absorption by barley roots:role of the dual mechanisms of alkali cation transport. Plant Physiol 42:14-18.
    Rausell A., Kanhonou R., Yenush L., Serrano R. and Ros R. (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J. 34:257-267.
    Rengel Z.(1992) The role of calcium in salt toxicity. Plant Cell Environ. 15:625-632.
    Robert E.R. (1993) Regulation of eukaryotic protein synthesis by initiation factors. J. Biol. Chem. 15:3017-3020.
    Ruhl M., Himmelspach M., Bahr G.M., Hammerschmid F., Jaksche H., Wolff B., Aschauer H., Farrington G.K., Probst H., Bevec D. and Hauber J. (1993) Eukaryotic initiation factor 5A is a cellular targer of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J.Cell Biol. 123:1309-1320.
    Saab I.N., Sharp R.E., Pritchard J. and Voetberg G.S. (1990) Increased endogenous seedings at low water potential. Plant Physiol 93:1329.
    Sacks M.M., Silk W.K.and Burman P. (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize.Plant Physiol. 114: 519–527
    Saijo Y., Hata S.,Kyozuka J.,Shimamoto K. and Izui K. (2000).Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J.23:319-327.
    Sakai H., Aoyama T. and Oka A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24, 703–711.
    Samarajeewa P.K., Barrero R.A., Umeda-Hara C., Kawai M. and Uchimiya H. (1999) Cortical cell death, cell proliferation, macromolecular movements and rTip1 expression patterns in roots of rice (Oryza sativa L.) underNaCl stress. Planta 207: 354–361
    Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual,2nd edi. Cold Spring Harbor,NY:Cold Spring Harbor Laboratory Press.
    Sanders D.,Brownlee C. and Harper J.F.(1999) Communicating with calcium. Plant Cell 11:691-706.
    Sasaki K., Abid M.R. and Miyazaki M. (1996). Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 384:151-154.
    Sauter M. (1997).Differential expression of a CAK (cdc2-activating kinase)-like protein kinase,cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J.11:181-190.
    Sauter M., Mekhedov S.L. And Kende H. (1995) Gibberellin promotes histone H1 kinase activity and expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J.7:623-632.owth of tumorigenic cell lines in culture. Biochim. Biophys. Acta 1310: 119–126.
    Schachtman D. and Liu W. (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants Trends Plant Sci.,4:281.
    Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A. and Hershey J. W. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 3105–3114.
    Serrano R. (1996) Salt tolerance in plants and microorganisms:toxicity targets and defense responses. Int. Rev. Cytiol. 165,1–52.
    Serrano R. and Gaxiola R. (1994) Microbial models and salt stress tolerance in plants. Crit. Rev. Plant Sci. 13, 121–138.
    Sheen J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Sci. 274, 1900–1902.
    Sheen J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA 95, 975–980.
    Shi X. P., Yin K. C., Ahern J., Davis L. J. and Stern A. M. (1996a) Effects of N1-guanyl-1,7-diaminoheptane, an inhibitor of deoxy-hypusine synthase, on the growth of tumorigenic cell lines in culture. Biochim. Biophys. Acta 1310: 119–126.
    Suzuki K., Yano A. and Shinshi H. (1999) Solw and prolonged activation of the p47 protein kinase during hypersensitive cell death in a culture of tobacco cells. Plant Physiol. 119:1465-1472.
    Tada Y., Hata S., Takata Y., Nakayashiki H., Tosa Y. and Mayama S. (2001) Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol. Plant. Microbe. Interact. 14:477-486.
    Takahashi S., Katagiri T., Hirayama T., Yamaguchi-Shinozaki K. and Shinozaki K.(2001) Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol. 42:214-222.
    Thompson G.M.,Veridiana S.P.C. and Sandro R.V. (2003) Mapping eIF5A binding sites for Dysl and Lial:in vivo evidence for regulation of eIF5A hypusination.
    Thompson J.E., Hopkins M.T., Taylor C. and Wang T.W. (2004) Regulation of senescence by eukaryotic translation initiation factor 5A:implications for plant growth and development. Trends in plant science 9:174-179.
    Tyerman S.D. and Skerrett I.M. (1999) Root ion channels and salinity. Sci.Hort.,78:175.
    Udovenko C.V., Mashanskh V.F. and Sinitskaya I.A. (1970) Changes of root cell ultrastructure under salinization in plants of different salt resistance. Sov Plant Physiol 17:813-819.
    Umeda M., Umeda-Hara C., Yamaguchi M., Hashimoto J. and Uchimiya H. (1999) Differential expression of genes for cyclin-dependent protein kinases in rice plants. Plant Physiol 119: 31–40.
    Urao T., Katagiri T., Mizoguchi T., Yamaguchi-Shinozaki K.,Hayashida N. and Shinozaki K. (1994) Two genes that encode Ca2+-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana. Mol.Gen.Genet.224:331.
    Wang H., Fowke L.C.and Crosby W.L. (1998) Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15,501-510.
    Wang H., Zhou Y., Gilmer S., Whitwill S and Fowke L.C. (2000) Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division,plant growth and morphology. Plant J.24,613-623.
    Wang T.W. and Arteca R.N. (1995) Identification and characterization of cDNAs encoding ethylene biosynthetic enzymes from Pelargonium x hortorum cv Snow Mass leaves. Plant Physiol. 109: 627-636.
    Wang T.W., Lu L., Wang D. and Thompson J.E. (2001) Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eukaryotic translation initiation factor 5A from tomato. J. Biol. Chem. 276: 17541-17549.
    Wang, T.W., Lu L., Zhang C.G., Taylor C., Thompson J.E. (2003) Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol. Biol. 52, 1223–1235
    Werker E., Lerner H.R.,Weimberg R. and Poljakoff-Mayber A (1983) Structural changes occurring in nuclei of barley root cells in response to a combined effect of salinity and ageing. Amer. J. Bot. 70:222-225.
    West G., Dirk I. and Gerrit T.S.B. (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol. 135:1050-1058.
    White P.J. (1999) The molecular mechanism of sodium influx to root cells. Trends in plant science 4(7):245-246.
    Yamaguchi S.K. and Shinozaki K. (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen. Genet. 236:331-40.
    Yang K.Y., Liu Y. and Zhang S. (2001). Activation of a mitogenactivated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98, 741–746.
    Zhong H and Lauchli A .(1994) Spatial distribution of solutes,K,Na,Ca and their deposition rates in the growth zone of primary cotton roots:effects of NaCl and CaCl2. Planta 194:34-41.
    Zhu J.K. (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124,941-948.
    Zhu, J.K. (2001) Plant salt tolerance. Trends Plant Sci. 6, 66–71.
    Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol 53:247-73.
    Zuk D. and Jacobson A. (1998) A single amino acid substitution in yeast eIF-5Aresults in mRNA stabilization. EMBO J. 17: 2914-2925.

    下載圖示 校內:2005-08-23公開
    校外:2005-08-23公開
    QR CODE