簡易檢索 / 詳目顯示

研究生: 毛彬旭
Mao, Bin-hsu
論文名稱: 應用DNA微點陣技術及聚合酶連鎖反應鑑定泌尿道致病性大腸桿菌的可能致病基因
Identification of the Potential Virulence Genes of Uropathogenic Escherichia coli by DNA Microarray and PCR-based Analyses
指導教授: 鄧景浩
Teng, Ching-Hao
曾進忠
Tseng, Chin-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 78
中文關鍵詞: 大腸桿菌DNA微點陣技術致病基因
外文關鍵詞: DNA microarray, Escherichia col, Virulence gene
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泌尿道致病性大腸桿菌是泌尿道感染, 如膀胱炎、腎盂腎炎、尿路感染引起之菌血症等感染症最主要的致病原。許多傳統的分型方法,包括血清型分析, 以PCR為基礎的基因型分析,脈衝式電泳分型法及多重基因座序列分析法等,都已經廣泛地應用於泌尿道致病性大腸桿菌的分型與鑑定,但是這些方法的鑑別力,遠不如能夠同時偵測大量基因資訊的DNA晶片。因此,我們利用從美國康乃爾大學獲得的寡核苷酸DNA晶片來對泌尿道致病性大腸桿菌進行分子分型。這個DNA晶片含有339個大腸桿菌的基因探針,能夠偵測許多致病性大腸桿菌基因,以及三個標準菌珠(K-12 MG1655, EHEC EDL933及UPEC CFT073)的特有與共有的基因。晶片分析的結果進行差別性層級叢集分析(differential hierarchical clustering)之後,發現造成下泌尿道感染的臨床分離株存有兩個子群(subgroup)。從系統發生學的角度來看,屬於其中一個子群的分離株,是比較接近腸道共生大腸桿菌族群,但屬於另一個子群的分離株,卻比較接近能夠造成上泌尿道感染及尿路型敗血症的分離株。

    雖然已經發現許多跟泌尿道感染致病機轉有關的因子,但仍有半數以上的泌尿道致病性大腸桿菌並不具有這些已知的致病基因,或者是僅具有其中之一。於是,我們合理地推測仍有還未被發現的致病因子,參與UPEC入侵泌尿道的機轉;而根據這個推測,我們希望找到新的、跟泌尿道感染致病機轉有關的基因。我們提出一個假設:UPEC的基因如果是跟泌尿道感染有流行病學上的關連性,那麼它很可能就會參與泌尿道感染的致病機轉。根據這個假設,我們找尋分佈率跟泌尿道感染有關連性的基因,為了達到這個目的,我們先利用上述提到的DNA晶片,對一小部分的大腸桿菌進行篩選,希望找出相較於腸道共生大腸桿菌,在泌尿道致病性大腸桿菌有比較普遍分佈的基因。DNA晶片分析的結果找到了6個比較普遍存在於泌尿道致病性大腸桿菌的基因,包括一個由eco58, eco59與eco60組成,受鐵離子調控的操縱元,以及其下游基因eco56,另外,也找到了兩個存在於UPEC CFT073基因組的ORFs。這些基因進一步地以231株泌尿道致病性大腸桿菌,115株腸道內的共生大腸桿菌,以及32株從感染非尿道感染引發之菌血症的病人血液中分離的臨床菌珠,進行大規模的PCR篩選。PCR的結果證實了這些基因是在流行病學上跟泌尿道感染有關聯(P<0.05),顯示它們很可參與尿道感染的致病機轉,因此值得我們進一步由分子生物學的角度切入研究其可能功能。

    Uropathogenic Escherichia coli(UPEC)is responsible for the majority of urinary tract infections(UTIs), including cystitis, pyelonephritis, and UTI-related bacteremia. Many conventional strain typing methods(such as serotyping, PCR-based genotyping, PFGE and MLST)have been widely employed to characterize and differentiate isolates belonging to the UPEC pathotype, but their discriminatory power is much lower when compared with DNA microarray analysis by which a large quantity of genetic information can be simultaneously acquired. In this study, we utilized the oligonucleotide spotted DNA arrays, which were obtained from Cornell University, to perform molecular subtyping of the UPEC isolates. The arrays contained 339 gene probes, which were able to detect various virulence genes of intestinal and extraintestinal pathogenic E. coli strains, to detect genes respectively specific to the three standard E. coli strains(K-12 MG1655, EHEC EDL933 and UPEC CFT073), and to detect genes commonly identified in these standard strains. Through differential hierarchical clustering of the microarray results, two subgroups of UPECs causing lower urinary tract infections were identified. One of the subgroups contained isolates phylogenetically closer to the intestinal commensal E. coli population, whereas the other subgroup contained isolates more similar to UPECs causing upper UTIs and urosepsis.

    Although various virulence factors involved in uropathogenesis have been identified, as many as half of all E. coli strains causing UTIs were shown to possess none or merely one of the known virulence factors. Accordingly, it is reasonable to speculate that there are still undiscovered virulence factors which are able to facilitate UPECs to invade urinary tract. According to this speculation, we expected to identify potential novel virulence genes associated with uropathogenesis. We proposed a hypothesis that if a gene of uropathogenic E. coli is epidemiologically associated with UTI, it is highly possible that the gene is involved in the pathogenesis of the disease. We planned to identify the E coli genes whose distribution rates are positively associated with UTI. For this purpose, we first employed the array mentioned above to screen a small amount of E. coli isolates for the genes with higher prevalence rates in the UPEC isolates than in the commensal fecal isolates. The microarray array results inferred that an iron-regulated operon consisting of eco58, eco59 and eco60 and its downstream gene eco56 were potentially associated with UTI. Moreover, two putative genes(eco293 and eco294)identified in CFT073 genome might be associated with UTI, too. These genes were further subjected to a large-scale PCR screening of 231 UPEC clinical isolates, 115 commensal strains, and 32 E. coli isolates from blood of the patients with non-UTI bacteremia. The PCR results validated that these genes were urovirulence-associated candidates shown to have epidemiological significance( P<0.05). Thus they are potential virulence genes involving uropathogenesis and worthy of further investigation.

    Chinese abstract……………………………………………………………...I English abstract.........................................................................III Acknowledgement……………………………………………………………V Table of contents………………………………………………………….VIII List of tables………………………………………………………………… XI List of figures………………………………………………………………..XII Symbols and abbreviations……………………………………………..XIV 1. Introduction…………………………………………………………....1 1.1 Discovery of Escherichia coli………………………………………1 1.2 Diseases caused by E. coli…………………………………………1 1.2.1 Intestinal pathogenic E. coli……….….……….……………2 1.2.2 Extraintestinal pathogenic E. coli……………………………4 1.3 Characteristics of E. coli….……………….….…………….……..4 1.4 Pathogenicity-associated islands………………………………..6 1.5 Urinary tract infections…………………………………………….7 1.5.1 The routes of urinary tract infections………….................8 1.5.2 Classification, symptoms and complications of UTIs…..9 1.5.3 Bacterial pathogens of UTIs……………………….………..10 1.5.4 UTI-associated virulence factors……….…………………..11 1.6 DNA microarray technology……..….………………….……….13 2. The objectives and hypothesis of this study…………….………15 3. Materials and methods………………………………………………17 3.1 Bacterial strains, stock and culture……………..……………17 3.2 Identification and validation of E. coli strains…….…………18 3.3 DNA microarray experiment…………………………………….18 3.3.1 Target DNA extraction……….……………………………….19 3.3.2 Target DNA digestion…..............................................20 3.3.3 Target DNA labeling………………………………………......21 3.3.4 Purification and concentration of the labeled DNA……21 3.3.5 Slide preparation for microarray hybridization………...23 3.3.6 Microarray hybridization……………………………….……23 3.3.7 Post-hybridization wash……………………………….…….24 3.3.8 Microarray scanning and data analysis…………………25 3.4 Polymerase chain reaction(PCR)assessment..................26 3.4.1 Preparation of DNA……………………………………………26 3.4.2 PCR primer design…………………………………………….27 3.4.3 Monoplex PCR assay………………………………………….27 3.4.4 Multiplex PCR assay………………………….……………….28 3.4.5 Agarose gel electrophoresis………………………………….29 3.5 Statistic analysis…………………………………………………29 4. Results…………………………………..…………………………….30 4.1 Gene profiling of 50 E. coli isolates by DNA microarray analyses…...................................................................30 4.1.1 There existed two subgroups in the clinical isolates causing lower UTIs……..…………………………….…….31 4.1.2 The candidates inferred from microarray data…………33 4.2 Six genes have been confirmed as potential virulence genes by large-scale PCR analyses…………………………………….34 4.3 sat shown to be less associated with lower UTIs…………..36 4.4 The distribution of eco294 allele II shown to be associated with host gender……..……………………………………………37 5. Discussion………………….…………………………………………..39 6. References……………………………………………………………..45 7. Tables…………………………………………………………………..60 8. Figures…………………………………………………………………66 9. Appendix…………………………………………………………………76 10. The author’s profile………………..………………………………….78

    Adler, J. and Templeton, B. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46(2):175-184, 1967.

    Afshari, C.A. Perspective:microarray technology, seeing more than spots. Endocrinology 143(6):1983-1989, 2002.

    Alteri, C.J. and Mobley, H.L. Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect. Immun.75:2679-2688, 2007

    Batchelor, M., Prasannan, S., Daniell, S., Reece, S., Connerton, I., Bloomberg, G., Dougan, G., Frankel, G. and Matthews, S. Structural basis for recognition of the translocated intimin receptor(Tir)by intimin from enteropathogenic Escherichia coli. EMBO J. 19(11):2452-2464, 2000.

    Bauer, R. J., Zhang, L., Foxman, B., Siitonen, A., Jantunen, M. E., Saxen, H. and Marrs, C. F. Molecular epidemiology of 3 putative virulence genes for Escherichia coli urinary tract infection-usp, iha, and iroN(E. coli) J. Infect. Dis. 185(10):1521-1524, 2002.

    Beinke, C., Laarmann, S., Wachter, C., Karch, H., Greune, L. and Schmidt, M. A. Diffusely adhering Escherichia coli strains induce attaching and effacing phenotypes and secrete homologs of Esp proteins. Infect. Immun. 66(2):528-539, 1998.

    Bekal, S., Brousseau, R., Masson, L., Prefontaine, G., Fairbrother, J. and Harel, J. Rapid identification of Escherichia coli pathotypes by viru- lence gene detection with DNA microarrays. J. Clin. Microbiol. 41(5): 2113-2125, 2003.

    Bentley, R. and Meganathan, R. Biosynthesis of vitamin K(menaquinone) in bacteria. Microbiol. Rev. 46(3):241-280, 1982.

    Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B. and Shao, Y. The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453-1474, 1997.

    Borucki, M. K., Reynolds, J., Call, D. R., Ward, T. J., Page, B. and Kadushin, J. Suspension microarray with dendrimer signal amplification allows direct and high-throughput subtyping of Listeria monocytogenes from genomic DNA. J. Clin. Microbiol. 43(7):3255-3259, 2005.

    Boscia, J.A. and Kaye, D. Asymptomatic bacteriuria in the elderly. Infect. Dis. Clin. North. Am. 1(4):893-905, 1987.

    Bray, J. Isolation of antigenically homogeneous strains of Bact. coli neopolitanum from summer diarrhoea of infants. J. Pathol. Bacteriol. 57: 239-247, 1945.

    Brisse, S., Issenhuth-Jeanjean, S. and Grimont, P. A. Molecular sero- typing of Klebsiella species isolates by restriction of the amplified capsular antigen gene cluster. J. Clin. Microbiol. 42(8):3388-3398, 2004.

    Brook, I. Urinary tract and genitor-urinary suppurative infections due to anaerobic bacteria. Int. J. Urol. 11(3):133-141, 2004.

    Bryant, M.P. Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am. J. Clin. Nutr. 27(11):1313-1319, 1974.

    Carlsson, S. Antibacterial effects of nitrite in urine. ISBN 91-7140-237-3:1-58, 2005.

    Car, J. Urinary tract infections in women: diagnosis and management in primary care. BMJ 332(7533):94-97, 2006.

    Cao, Z. and Klebba, P. E. Mechanisms of colicin binding and transport through outer membrane porins. Biochimie. 84(5-6):399-412, 2002.

    Castellani, A. and Chalmers, A.J. Manual of Tropical Medicine, 3rd ed., Williams Wood and Co., New York, 1919.

    Chang, W.C., Li, C.W. and Chen, B.S. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 6:44, 2005.

    Chang, S.C., Tsai, C.L., Wang, J.T., Hwang, K.P., Leu, H.S., Chuang, Y.C., Wang, L.S., Wang, F.D., Lau, Y.J., Liu, C.C., Chou, M.Y., Wang, D.J. and Chen, K.T. Nosocomial infections in medical centers and regional hospitals between 1999 and 2002 in Taiwan. Infect. Contr. J. 14(1):1-11, 2004.

    Chen, S. L., Hung, C. S., Xu, J., Reigstad, C. S., Magrini, V., Sabo, A., Blasiar, D., Bieri, T., Meyer, R. R., Ozersky, P., Armstrong, J. R., Fulton, R. S., Latreille, J. P., Spieth, J., Hooton, T. M., Mardis, E. R., Hultgren, S. J. and Gordon, J. I. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli:a comparative genomics approach. Proc. Natl. Acad. Sci. U.S.A. 103(15):5977-5982, 2006.

    Chittur, S.V. DNA microarrays:tools for the 21st century. Comb. Chem. High Throughput Screen. 7(6):531-537, 2004.

    Chouikha, I., Germon, P., Brée, A., Gilot, P., Moulin-Schouleur, M. and Schouler, C. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J. Bacteriol. 188(3):977-987, 2006.

    Clarke, T. E., Ku, S. Y., Dougan, D. R., Vogel, H. J. and Tari, L. W. The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat. Struct. Biol. 7(4):287-291, 2000.

    Clermont, O., Bonacorsi, S. and Bingen, E. Rapid and simple determi- nation of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66(10):4555-4558, 2000.

    Connell, I., Agace, W., Klemm, P., Schembri, M., Mårild, S. and Svanborg, C. Type 1 fimbrial expression enhances Escherichia coli viru- lence for the urinary tract. Proc. Natl. Acad. Sci. U.S.A. 93(18):9827-9832, 1996.

    Crosa, J. H. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53(4):517-530, 1989.

    Dale, C., Jones, T. and Pontes, M. Degenerative evolution and functional diversification of type-III secretion systems in the insect endosymbiont Sodalis glossinidius. Mol. Biol. Evol. 22(3):758-766, 2005.

    Darnton, N. C., Turner, L., Rojevsky, S. and Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189(5):1756-1764, 2007.

    Desai, S. Dysuria(women). In:Desai, S.(ed) Clinician’s Guide to Diagnosis. Hudson, Ohio:Lexi-Comp, Inc, 189-206, 2001.

    Donnenberg, M. S., Yu, J. and Kaper, J. B. A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J. Bacteriol. 175(15):4670-4680, 1993.

    Dozois, C. M., Daigle, F. and Curtiss, R., 3rd Identification of pathogen- specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc. Natl. Acad. Sci. U.S.A. 100 (1):247-252, 2003.
    Draghici, S., Khatri, P., Eklund, A. C. and Szallasi, Z. Reliability and reproducibility issues in DNA microarray measurements. Trends Genet. 22 (2):101-109, 2006.
    Duncan, M. J. Genomics of oral bacteria. Crit. Rev. Oral. Biol. Med.14(3):175-187, 2003.

    Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95(25):14863-14868, 1998.

    Eisenhauer, H. A., Shames, S., Pawelek, P. D., and Coulton, J. W. Siderophore transport through Escherichia coli outer membrane receptor FhuA with disulfide-tethered cork and barrel domains. J. Biol. Chem. 280(34):30574-30580, 2005.

    Eisenstein, B.I. and Jones, G.W. The spectrum of infections and patho- genic mechanisms of Escherichia coli. Adv. Intern. Med. 33:231-251, 1988.

    Escherich, T. Die Darmbacterien des Neugeborenen und Säuglings. Fort- schr Med. 3:515-528, 547-554, 1885.

    Escherich, T. Die Darmbacterien des Säuglings und ihre Beziehung zur Physiologie der Verdauung. Stuttgart:Verlag Ferdinand Enke, 1886.

    Ferrières, L., Hancock, V. and Klemm, P. Specific selection for virulent urinary tract infectious Escherichia coli strains during catheter-associated biofilm formation. FEMS Immunol. Med. Microbiol. 51(1):212-219, 2007.

    Finegold, S.M., Sutter, V.L. and Mathisen, G.E. In:Hentges, D.J.(ed)Human Intestinal Microflora in Health and Disease. Academic, New York, 3-31, 1983.

    Finger, G. and Landau, D. Pathogenesis of urinary tract infections with normal female anatomy. Lancet Infect. Dis. 4(10):631-635, 2004.

    Foxman, B. and Riley, L. Molecular epidemiology:focus on infection. Am. J. Epidemiol. 153(12):1135-1141, 2001.

    Foxman, B. Epidemiology of urinary tract infection:incidence, morbidity and economic costs. Am. J. Med. 113(Suppl. 1A):5S-13S, 2002.

    Franco, A.V. Recurrent urinary tract infection. Best Pract. Res. Clin. Obstet. Gynaecol. 19(6):861-873, 2005.

    Frankel, G., Candy, D. C., Everest, P. and Dougan, G. Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei. Infect. Immun. 62(5):1835-1842, 1994.

    Gal-Mor, O. and Finlay, B. B. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell. Microbiol. 8(11):1707-1719, 2006.

    Garaizar, J., Rementeria, A. and Porwollik, S. DNA microarray tech- nology:a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol. Med. Microbiol. 47(2):178-189, 2006.

    Groisman, E. A. and Ochman, H. Pathogenicity islands:bacterial evolution in quantum leaps. Cell 87(5):791-794, 1996.

    Gunther IV, N.W., Lockatell, V., Johnson, D.E. and Mobley, H.L. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect. Immun. 69(5):2838- 2846, 2001.

    Guyer, D.M., Radulovic, S., Jones, F. and Mobley, H.L. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect. Immun. 70(8):4539- 4546, 2002.

    Hacker, J. and Carniel, E. Ecological fitness, genomic islands and bacte- rial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2(5):376-381, 2001

    Hancock, V., Ferrieres, L. and Klemm, P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology. 154(Pt 1):167-175, 2008.

    Harris, R.E., Thomas, V.L. and Shelokov, A. Asymptomatic bacteriuria in pregnancy:antibody-coated bacteria, renal function, and intrauterine growth retardation. Am. J. Obstet. Gynecol. 126(1):20-25, 1976.

    Hejnova, J., Dobrindt, U., Nemcova, R., Rusniok, C., Bomba, A., Frangeul, L., Hacker, J., Glaser, P., Sebo, P. and Buchrieser, C. Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86(O83 : K24 : H31). Microbiology 151(Pt 2):385-398, 2005.

    Hill, M.J. In:Hill, M.J.(ed)Role of Gut Bacteria in Human Toxicology and Pharmacology. London:Taylor and Francis, 3-18, 1995.

    Hoheisel, J. D. Microarray technology:beyond transcript profiling and genotype analysis. Nat. Rev. Genet. 7(3):200-210, 2006.

    Hooton, T.M., Stapleton, A.E., Roberts, P.L., Winter, C., Scholes, D., Bavendam, T. and Stamm, W.E. Perineal anatomy and urine-voiding characteristics of young women with and without recurrent urinary tract infections. Clin. Infect. Dis. 29(6):1600–1601, 1999.

    Ingersoll, M. A., Moss, J. E., Weinrauch, Y., Fisher, P. E., Groisman, E. A. and Zychlinsky, A. The ShiA protein encoded by the Shigella flexneri SHI-2 pathogenicity island attenuates inflammation. Cell. Microbiol. 5(11):797-807, 2003.

    Ingersoll, M. A. and Zychlinsky, A. ShiA abrogates the innate T-cell response to Shigella flexneri infection. Infect. Immun. 74(4):2317-2327, 2006.

    Johnson, J.R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4(1):80-128, 1991.

    Johnson, J.R., Moseley, S.L., Roberts, P.L. and Stamm, W.E. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis:association with patient characteristics. Infect. Immun. 56(2):405-412, 1988.

    Johnson, J. R. and Russo, T. A. Extraintestinal pathogenic Escherichia coli:“the other bad E coli”. J. Lab. Clin. Med. 139(3):155-162, 2002.

    Johnson, J. R. and Russo, T. A. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int. J. Med. Microbiol. 295(6-7):383-404, 2005.

    Kaper, J.B., Nataro, J.P., and Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2(2):123-140, 2004.

    King, M. R., Vimr, R. P., Steenbergen, S. M., Spanjaard, L., Plunkett, G., 3rd, Blattner, F. R. and Vimr, E. R. Escherichia coli K1-specific bacterio- phage CUS-3 distribution and function in phase-variable capsular poly- sialic acid O acetylation. J. Bacteriol. 189(17):6447-6456, 2007.

    Kingsley, R. A., Humphries, A. D., Weening, E. H., De Zoete, M. R., Winter, S., Papaconstantinopoulou, A., Dougan, G. and Baumler, A. J. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium:Identification of intestinal colonization and persistence determinants. Infect. Immun. 71(2):629-640, 2003.

    Klemm, P., Hancock, V. and Schembri, M. A. Mellowing out:adaptation to commensalism by Escherichia coli asymptomatic bacteriuria strain 83972. Infect. Immun. 75(8):3688-3695, 2007.

    Korhonen, T.K., Virkola, R. and Holthofer, H. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect. Immun. 54(2):328-332, 1986.

    Le, J., Briggs, G.G., McKeown, A. and Bustillo, G. Urinary tract infec- tions during pregnancy. Ann. Pharmacother. 38(10):1692-1701, 2004.

    Lloyd, A. L., Rasko, D. A. and Mobley, H. L. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol. 189(9):3532-3546, 2007.

    Lomberg, H., Hellstrom, M., Jodal, U., Leffler, H., Lincoln, K. and Svanborg Eden, C. Virulence-associated traits in Escherichia coli causing first and recurrent episodes of urinary tract infection in children with or without vesicoureteral reflux. J. Infect. Dis. 150(4):561-569, 1984.

    Majtan, T., Majtanova, L., Timko, J. and Majtan, V. Oligonucleotide microarray for molecular characterization and genotyping of Salmonella spp. strains. J. Antimicrob. Chemother. 60(5):937-946, 2007.

    Mazzulli, T. Resistance trends in urinary tract pathogens and impact on
    management. J. Urol. 168(4 Pt2):1720-1772, 2002.

    McEwen, L. N., Farjo, R. and Foxman, B. Antibiotic prescribing for cystitis: how well does it match published guidelines? Ann. Epidemiol. 13(6):479-483, 2003.

    McLaughlin, S.P. and Carson, C.C. Urinary tract infections in women. Med. Clin. North Am. 88(2):417-429, 2004.

    Meng, M.V. and McAninch, J.W. Infection of the Upper Urinary Tract. In:Welssels, H. and McAninch, J.W.(eds)Urological Emergencies A Practical Guide. ISBN:978-1-58829-256-8, 115-134, 2005.

    Middendorf, B., Hochhut, B., Leipold, K., Dobrindt, U., Blum-Oehler, G. and Hacker, J. Instability of pathogenicity islands in uropathogenic Esche- richia coli 536. J. Bacteriol. 186(10):3086-3096, 2004.

    Mills, M., Meysick, K.C. and O’Brien, A.D. Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect. Immun. 68(10):5869-5880, 2000.

    Morin, M. D. and Hopkins, W. J. Identification of virulence genes in uropathogenic Escherichia coli by multiplex polymerase chain reaction and their association with infectivity in mice. Urology 60(3):537-541, 2002.

    Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon- Grasteau, S., Germon, P., Rasschaert, D. and Schouler, C. Extra- intestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J. Clin. Microbiol. 45(10):3366-3376, 2007.

    Müller, D., Greune, L., Heusipp, G., Karch, H., Fruth, A., Tschäpe, H. and Schmidt, M. A. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl. Environ. Microbiol. 73(10): 3380-3390, 2007.

    Mulvey, M. A., Schilling, J. D. and Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69(7):4572-4579, 2001.

    Nataro, J. P. and Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11(1):142-201, 1998.

    Nataro, J. P., Seriwatana, J., Fasano, A., Maneval, D. R., Guers, L. D., Noriega, F., Dubovsky, F., Levine, M. M. and Morris, J. G., Jr. Identifi- cation and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains. Infect. Immun. 63(12):4721-4728, 1995.

    Neilands, J. B. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270(45):26723-26726, 1995.

    Neill, M. A., Tarr, P. I., Taylor, D. N. and Trofa, A. F. Escherichia coli. In:Hui, Y. H., Gorham, J. R., Murell, K. D. and Cliver, D. O.(eds) Foodborne Disease Handbook. New York:Marcel Decker, Inc., 169-213, 1994.

    Nowicki, B., Svanborg-Edén, C., Hull, R. and Hull, S. Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli. Infect. Immun. 57(2):446-451, 1989.

    Ørskov, I. and Ørskov, F. Escherichia coli in extra-intestinal infections. J. Hyg.(Lond)95(3):551-575, 1985.

    Patton, J.P., Nash, D.B. and Abrutyn, E. Urinary tract infection:economic considerations. Med. Clin. North Am. 75(2):495-513, 1991.

    Palaniappan, R. U., Zhang, Y., Chiu, D., Torres, A., Debroy, C., Whittam, T. S. and Chang, Y. F. Differentiation of Escherichia coli pathotypes by oligonucleotide spotted array. J. Clin. Microbiol. 44 (4):1495-1501, 2006.

    Pannekoek, Y., Morelli, G., Kusecek, B., Morré, S. A., Ossewaarde, J. M., Langerak, A. A. and Van Der Ende, A. Multi locus sequence typing of Chlamydiales:clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol. 8(42), 2008.

    Picard, B., Duriez, P., Gouriou, S., Matic, I., Denamur, E. and Taddei, F. Mutator natural Escherichia coli isolates have an unusual virulence phenotype. Infect. Immun. 69(1):9-14, 2001.

    Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A. and Cohen, M. L. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308(12):681-685, 1983.

    Romero, R., Oyarzun, E., Mazor, M., Sirtori, M., Hobbins, J.C. and Bracken, M. Meta-analysis of the relationship between asymptomatic bacteriuria and preterm delivery/low birth weight. Obstet. Gynecol. 73(4):576-582, 1989.

    Ronald, A. The etiology of urinary tract infections:tradition and emerging pathogens. Am. J. Med. 113(Suppl. 1A):14S-19S, 2002.

    Ruiz, J., Simon, K., Horcajada, J. P., Velasco, M., Barranco, M., Roig, G., Moreno-Martinez, A., Martinez, J. A., Jimenez De Anta, T., Mensa, J., and Vila, J. Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. J. Clin. Microbiol. 40(12):4445-4449, 2002.

    Russo, T. A., Carlino, U. B., Mong, A. and Jodush, S. T. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect. Immun. 67(10):5306-5314, 1999.

    Russo, T. A., Carlino, U. B. and Johnson, J. R. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun. 69(10):6209-6216, 2001.

    Scaria, J., Palaniappan, R. U., Chiu, D., Phan, J. A., Ponnala, L., Mcdonough, P., Grohn, Y. T., Porwollik, S., Mcclelland, M., Chiou, C. S., Chu, C. and Chang, Y. F. Microarray for molecular typing of Salmonella enterica serovars. Mol.Cell Probes, 2008.

    Schmidt, H. and Hensel, M. Pathogenicity islands in bacterial pathogen- nesis. Clin. Microbiol. Rev. 17(1):14-56, 2004.

    Schmitt, C.K., Meysick, K.C. and O’Brien, A.D. Bacterial toxins:friends or foes? Emerg.. Infect. Dis. 5(2):224-234, 1999.

    Schoolnik, G. K. Intimin and the intimate attachment of bacteria to human cells. J. Clin. Invest. 92(3):1117-1118, 1993.

    Schulze, J., Schiemann, M. and Sonnenborn, U. 120 Jahre E. coli Bedeutung in Forschung und Medizin. Alfred-Nissle-Gesellschaft, ISBN 3-00-018600-X:1-55, 2006.

    Šmajs, D. and Weinstock, G. M. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J. Bacteriol. 183(13):3958-3966, 2001.

    Sobel, J.D. Pathogenesis of urinary tract infection. Role of host defenses. Infect. Dis. Clin. North Am. 11(3):531-549, 1997.

    Srinivasan, U., Foxman, B. and Marrs, C. F. Identification of a gene encoding heat-resistant agglutinin in Escherichia coli as a putative virulence factor in urinary tract infection. J. Clin. Microbiol. 41(1):285-289, 2003.

    Stafford, G.P., Ogi, T. and Hughes, C. Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. Microbiology 151(6):1779-1788, 2005.

    Stoughton, R.B. Applications of DNA microarrays in biology. Annu. Rev. Biochem. 74:53-82, 2005.

    Svanborg-Edén, C. and Hansson, H.A. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect. Immun. 21(1):229-237, 1978.

    Tabb, M. M., Sun, A., Zhou, C., Grun, F., Errandi, J., Romero, K., Pham, H., Inoue, S., Mallick, S., Lin, M., Forman, B. M. and Blumberg, B. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 278(45):43919-43927, 2003.

    Tartof, S. Y., Solberg, O. D., Manges, A. R. and Riley, L. W. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J. Clin. Microbiol. 43(12):5860-5864, 2005.

    Toledo, M. R., Alvariza, M. do C., Murahovschi, J., Ramos, S. R. and Trabulsi, L. R. Enteropathogenic Escherichia coli serotypes and endemic diarrhea in infants. Infect. Immun. 39(2):586-589, 1983.

    Torres, A. G., Redford, P., Welch, R. A. and Payne, S. M. TonB-dependent systems of uropathogenic Escherichia coli:aerobactin and heme transport and TonB are required for virulence in the mouse. Infect. Immun. 69(10):6179-6185, 2001.

    Trabulsi, L. R., Keller, R. and Tardelli Gomes, T. A. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8(5):508-513, 2002.

    Twaij, M. Urinary tract infection in children:a review of its pathogenesis and risk factors. J. R. Soc. Health 120(4):220-226, 2000.

    Vázquez-Boland, J. A., Domínguez-Bernal, G., González-Zorn, B., Kreft, J. and Goebel, W. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 3(7):571-584, 2001.

    Wayne, R., Frick, K. and Neilands, J. B. Siderophore protection against colicins M, B, V, and Ia in Escherichia coli. J. Bacteriol. 126(1):7-12, 1976.

    Welch, R. A., Burland, V., Plunkett, G., 3rd, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A., Hackett, J., Stroud, D., Mayhew, G. F., Rose, D. J., Zhou, S., Schwartz, D. C., Perna, N. T., Mobley, H. L., Donnenberg, M. S. and Blattner, F. R. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99(26):17020-17024, 2002.

    Welinder-Olsson and C. and Kaijser, B. Enterohemorrhagic Escherichia coli(EHEC). Scand. J. Infect. Dis. 37(6-7):405-416, 2005.

    Winfield, M. D. and Groisman, E. A. Role of nonhost environments in the life- styles of Salmonella and Escherichia coli Appl. Environ. Microbiol. 69(7):3687-3694, 2003.

    下載圖示 校內:2012-01-06公開
    校外:2013-01-06公開
    QR CODE