簡易檢索 / 詳目顯示

研究生: 李思賢
Li, Ssu-Hsien
論文名稱: P型氮化鎵閘極氮化鋁鎵/氮化鎵高速電子遷移率電晶體之變溫量測及長時間導通壓力下之可靠度分析
Reliability Analysis of Thermal and Long-Term On-State Stress in p-GaN Gate AlGaN/GaN HEMT
指導教授: 王永和
Wang, Yeong-Her
鄒安傑
Tzou, An-Jye
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 90
中文關鍵詞: P型氮化鋁鎵/氮化鎵高電子遷移率電晶體可靠度分析電洞注入長時間開態偏壓變溫量測
外文關鍵詞: AlGaN/GaN, high electron mobility transistors (HEMTs), hole injection, thermal stress, bidirectional threshold voltage shift
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁鎵/氮化鎵高電子遷移率電晶體(HEMT)具有高崩潰電場,高電子遷移率和高電子密度,因此在高功率下具有出色的性能。目前由於P型氮化鋁鎵/氮化鎵高電子遷移率電晶體的製程可靠度較其他方式來得穩定,以至於成為目前常關型HEMT的主流結構,不過其仍有許多可靠度議題需要被研究。
    本論文以元件導通條件進行長時間的開態偏壓以及變溫量測,進一步去觀察元件的特性變化,而發現在變溫狀態下,元件各項特性會呈現衰減的趨勢,則與升溫後電子的能量變化相關導致此現象。
    在變溫量測的實驗中,我們發現元件特性在升溫時有劣化的趨勢,而我們初步推測原因為晶格散射以及缺陷捕捉電子的現象產生,隨後我們透過公式進行了萃取活化能的計算,得到0.18eV及0.15eV,代表了缺陷在材料中的位置,分別在AlGaN barrier及GaN buffer當中,進一步可以確認前面所述的推論是否正確。
    另外在長時間的偏壓條件下,我們分別使用閘極偏壓為5V及6V及7V進行量測,發現元件的臨界電壓會有正偏及負偏的現象,由此現象透過能帶圖及結構圖得以去分析元件有電子捕獲及電洞注入的機制,在5V時,臨界電壓的正偏移與與缺陷捕捉電子有關,而在偏壓超過6V之後,臨界電壓的負偏移與電洞的注入有關,而注入的電洞與電子隨著時間增加進行複合導致產生後續正偏移的現象。

    AlGaN/GaN High Electron Mobility Transistor (HEMT) devices deliver excellent performance in high power applications owing to their wide bandgap, high electron mobility, and high electron sheet density.
    Despite the reliability issues still under investigation, the p-GaN gate HEMT is still the only commercially normally-off GaN-based device for power applications owing to its relatively stable fabrication.
    In this thesis, we measured p-GaN devices under long-term on state stress and reliability testing of thermal stress to further understand performance degradation and bidirectional threshold voltage shift.
    In the case of thermal stress, we inferred that lattice scattering and electron trapping were related to performance degradation after measurement. Moreover, we extracted the average activation energy of 0.18eV and 0.15eV which indicated the trap location in AlGaN barrier layer and GaN buffer layer.
    In the case of long term on state stress, we obtained bidirectional threshold voltage shift under gate bias of 5V, 6V, 7V. We used a band diagram and a schematic structure to analyze the mechanisms of electron trapping and hole injection. The reasonable explanation for bidirectional threshold voltage shift can be described as hole injection induced negative VTH shift and injected holes recombined with electrons in the channel, resulting in slightly positive VTH shift.

    中文摘要 I Abstract III CONTENTS VIII List of tables XI List of Figures XII Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 5 1-3 Organization 9 Chapter 2 Principle of AlGaN/GaN HEMTs 11 2-1 Material Properties 11 2-1-1 Wide bandgap semiconductor materials 11 2-1-2 Wide band gap materials 13 2-1-3 On resistance and Breakdown voltage 15 2-2 Lattice Structure 18 2-3 The Polarization Mechanism of AlGaN/GaN Heterostructure 21 2-3-1 Spontaneous Polarization 21 2-3-2 Piezoelectric Polarization 25 2-4 Two-Dimensional Electron Gas (2DEG) 29 Chapter3 Carrier Transport Mechanism of Normally-off p-GaN Gate AlGaN/GaN HEMT 33 3-1 Operation Principle of p-GaN Gate AlGaN/GaN HEMT 33 3-2 Carrier Transport on p-GaN Gate AlGaN/GaN HEMT 36 3-2-1 Electron Trapping 36 3-2-2 Hole Injection 39 Chapter4 Results and Discussion 42 4-1 Device Structure 42 4-1-1 Device Structure Overview 42 4-1-2 Layout Description 45 4-1-3 Schematic Diagram of Fabrication Process 47 4-2 Physical Properties of the p-GaN Gate AlGaN/GaN HEMT 50 4-2-1 Surface analysis using Transmission Electron Microscopy 50 4-2-2 Energy-Dispersive X-ray Spectroscopy 52 4-3 Reliability Testing of the p-GaN Gate AlGaN/GaN HEMT Using Thermal Stress 55 4-3-1 Measurement Process Flow 55 4-3-2 Transfer Characteristics 56 4-3-3 On-off current Ratio 58 4-3-4 Gate Leakage Current 60 4-3-5 Saturation Drain Current 62 4-3-6 Extraction of Activation Energy 64 4-4 Investigation of on-state stress on the p-GaN Gate AlGaN/GaN HEMT 67 4-4-1 Measurement Process Flow 67 4-4-2 Comparison of Threshold Voltage 68 4-4-3 Comparison of Transconductance 73 4-4-4 Comparison of Saturation Drain Current 75 4-4-5 Comparison of Gate Leakage Current 77 Chapter 5 Conclusion 79 Chapter 6 Future Work 83 Reference 84

    [1] U. K. Mishra, P. Parikh, and Y.F. Wu, “AlGaN/GaN HEMTs-an overview of device operation and applications,” Proceedings of the IEEE, vol. 90, pp. 1022-1031, 2002.
    [2] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” in IEEE Transactions on Electronic Devices, vol. 48, no. 3, pp.586-590, Mar. 2001
    [3] O. Ambacher, "Growth and applications of group III-nitrides, " Journal of Physics D Applied Physics, vol. 31, no. 20, pp. 2653-2710, Oct. 1998.
    [4] B.J. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Letters, vol. 10, no. 10, pp. 455-457, Oct. 1989.
    [5] P. Murugapandiyan, S. Ravimaran, and J. William, “DC and microwave characteristics of Lg 50 nm T-gate InAlN/AlN/GaN HEMT for future high power RF applications,” AEU-International Journal of Electronics and Communications, vol. 77, pp. 163-168, Jul. 2017.
    [6] M. Micovic, A. Kurdoghlian, H.P. Moyer, P. Hashimoto, A. Schmitz, I. Milosavljevic, P.J. Willadsen, W.S. Wong, J. Duvall, M. Hu, M. Wetzel, and D.H. Chow, “GaN MMIC technology for microwave and millimeter-wave applications.” IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC'05, Nov. 2005.
    [7] J. Kováč jr, R. Szobolovszký, A. Kósa, A. Chvála, J. Marek, L. Stuchlíková, J. Kováč,” GaN/SiC based high electron mobility transistors for integrated microwave and power circuits”, Institute of Electronics and Photonics, Ilkovičova 3, 812 19, Bratislava, 2015.
    [8] G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, T.L. Wu, M.V. Hove, D.M. Stoffels,S. Decoutere, and E. Zanoni, “Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate,” Microelectronics Reliability, vol. 58, pp. 151-157, Mar. 2016.
    [9] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Transactions on Electron Devices, vol. 53, no. 2,pp. 356-362, Feb. 2006.
    [10] K.J. Chen, L. Yuan, M.J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou B.K. Li, and J.N. Wang, “Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology,” International Electron Devices Meeting, IEEE, Dec. 2011.
    [11] C. Yang, X. Luo, T. Sun, A. Zhang, D. Ouyang, S. Deng, J. Wei, and B. Zhang, “High breakdown voltage and low dynamic on-resistance AlGaN/GaN HEMT with fluorine ion implantation in SiNx passivation layer,” Nanoscale research letters, Lett, vol. 14, no. 1, May. 2019.
    [12] O. Hilt, A. Knauer, F. Brunner, E.B. Treidel, and J. Würfl, “Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer,” 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD). IEEE, Aug. 2010.
    [13] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík, “Gate reliability investigation in normally-off p-type-GaN cap/AlGaN/GaN HEMTs under forward bias stress,” IEEE Electron Device Letters, vol. 37, no. 4, pp. 385-388, Apr. 2016.
    [14] X. Huang, Q. Li, Z. Liu and F. C. Lee, "Analytical loss model of high voltage GaN HEMT in cascode configuration," IEEE Energy Conversion Congress and Exposition, vol. 29, no. 5, pp. 3587-3594, Sep. 2013.
    [15] D. Marcon, M. Van Hove, B. De Jaeger, N. Posthuma, D.Wellekens, “Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-on-Si with Au-free technology.” Proceedings of SPIE - The International Society for Optical Engineering. 9363, 2015.
    [16] Y. Shi, Q. Zhou, Q. Cheng, P. Wei, L. Zhu, D. Wei, A. Zhang, W. Chen, "Carrier transport mechanisms underlying the bidirectional VTH shift in p-GaN gate HEMTs under forward gate stress," IEEE Transactions on Electron Devices, vol. 66, no. 2, pp. 876-882, Feb. 2019.
    [17] https://docplayer.net/167265239-Understanding-the-dynamic behavior-in-gan-on-si-power-devices-and-ic-s-kevin-j-chen.html
    [18] S.K. Aarief. “Diffusion soldering for high-temperature packaging of power electronics.” Dissertation for Ph.D., University of Florida Atlantic University, Jan. 2018
    [19] B. Gelmont, K. Kim, and M. Shur, "Monte carlo simulation of electron transport in gallium nitride, " Journal of Applied Physics, vol. 74, no.3, pp. 1818-1821, Apr. 1993.
    [20] N. Kaminski, O. Hilt. “SiC and GaN devices - competition or coexistence” International Conference on Integrated Power Electronics Systems (CIPS), pp. 1-11, 2012.
    [21] J.Y. Tsao, S. Chowdury, M.A. Hollis, D. Jena, N.M. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collao, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Advanced Electronic Materials, vol. 4, no. 1, pp. 965-1006, Dec. 2017.
    [22] P.H. Jefferson, “Optoelectrical properties of highly mismatched semiconductor materials,” Dissertation for Ph.D., University of Warwick, pp. 1-4, May 2009.
    [23] B.S Kang, H.T. Wang, L.C Tien, F. Ren, B.P. Gila, D.P. Norton, C.R. Abernathy, J. Lin, and S.J. Pearton, “Wide bandgap semiconductor nanorod and thin film gas sensors,” Sensors, vol. 6, pp. 643-666, Jun. 2006.
    [24] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, ”Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [25] S.H, M. DiDomenico Jr, and I. Camlibel. “Relationship between linear and quadratic electro‐optic coefficients in LiNbO3, LiTaO3, and other oxygen‐octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Applied Physics Letters, vol. 12, no. 6, pp. 209-211, Mar. 1968.
    [26] F. Fornetti “Characterization and performance optimization of GaN HEMTs and amplifiers for radar applications” Dissertation for Ph.D., University of Bristol, Dec. 2010.
    [27] B.E. Foutz, O. Ambacher, M.J. Murphy, V. Tilak, and L.F. Eastman, “Polarization induced charge at heterojunctions of the III–V nitrides and their alloys,” Physica Status Solidi, vol. 216, no.1, pp. 415-418, Nov. 1999.
    [28] L. Bouzaïene, M.H. Gazzah, H. Mejri, and H. Maaref, “Back doping design in delta-doped AlGaN/GaN heterostructure field-effect transistors,” Solid state communications, vol. 140, no. 6, pp. 308-312, Nov. 2006.
    [29] Y.C. Kong, Y.D. Zheng, C.H. Zhou,S.L. Gu, R. Zhang,P. Han, Y. Shi, and R.L. Jiang, “Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures,” Applied Physics A, vol. 84, pp. 95-98, Apr. 2006.
    [30] F. Bernardini, and V. Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. 56, Oct. 1997.
    [31] H.X. Guang, Z.D. Gang, J.D. Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chinese Physics B, vol. 24, no. 6, pp. 067301-0673015, Apr. 2015.
    [32] G. Greco, I. Ferdinando, R. Fabrizio “Review of technology for normally-off HEMTs with p-GaN gate.” Materials Science in Semiconductor Processing. 78. 10.1016/j.mssp.2017.09.027, 2017.
    [33] http://cpb.iphy.ac.cn/article/2015/cpb_24_6_067301.html
    [34] L. Efthymiou, G. Longobardi, G. Camuso, Terry Chien, M. Chen and F. Udrea. “On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices.” Appl. Phys. Lett. 110, 123502, Mar. 2017.
    [35] F. Roccaforte, G. Greco, P. Fiorenza and F. Iucolano, “An overview of normally-off GaN-based high electron mobility transistors,” Materials (Basel), vol. 12, no. 10, May 2019.
    [36] M. Meneghini, A. Tajalli, P. Moens, A. Banerjee, E. Zanoni, G. Meneghesso,” Trapping phenomena and degradation mechanisms in GaN-based power HEMTs,” Materials Science in Semiconductor Processing, vol. 78, pp.128-126, May. 2018.
    [37] G. Meneghesso, M. Meneghini, I. Rossetto, C. De Santi, N. Trivellin, E. Zanoni. “GaN HEMTs with p-GaN gate: field- and time-dependent degradation.” Solid-State Electronics, vol.10104, Feb. 2017.
    [38] X. Li, G. Xie, C. Tang, K. Sheng “Charge trapping related channel modulation instability in P-GaN gate HEMTs.” Microelectronics Reliability, vol. 65, pp. 35-40, Jul. 2016.
    [39] Y. Shi, Q, Zhou, Q. Cheng, P. Wei, L. Zhu, D. Wei, A. Zhang, W. Chen, B. Zhang. "Bidirectional threshold voltage shift and gate leakage in 650 V p-GaN AlGaN/GaN HEMTs: The role of electron-trapping and hole-injection." 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 96-99, 2018.
    [40] S. Yang, S. Huang, J. Wei, Z. Zheng, Y. Wang, J. He, K.J. Chen "Identification of trap states in p-GaN layer of a p-GaN/AlGaN/GaN power HEMT structure by Deep-Level Transient Spectroscopy," IEEE Electron Device Letters, vol. 41, no. 5, pp. 685-688, May 2020.
    [41] Y. Wu, C.Y. Chen, A. Jesús, “Activation energy of drain-current degradation in GaN HEMTs under high-power DC stress,” Microelectronics Reliability, vol. 54, no. 12, pp. 2668-2674, 2014.
    [42] H. Lars, A. Muhammad, O. Alessandro, A. Mohammed, H. Michael, W. Clemens, B. Thomas, C. Ildikó, T. Lajos, J.N. Burghartz. “Temperature dependent vertical conduction of GaN HEMT structures on silicon and bulk GaN substrates.” Physica Status Solidi, vol. 216, no. 1, pp. 1-7, Sep. 2018.
    [43] A.Y. Polyakov, I.H. Lee, “Deep traps in GaN-based structures as affecting the performance of GaN devices,” Materials Science and Engineering, vol. 94, pp. 1-56, 2015.
    [44] W. Chikhaoui, J.M. Bluet, B.C. Catherine, C. Dua, R. Aubry “Deep traps analysis in AlGaN/GaN heterostructure transistors.” Physica Status Solidi, vol. 7, no. 1, pp. 92-95, Jan. 2010.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE