簡易檢索 / 詳目顯示

研究生: 陳尚瑋
Chen, Shang-Wei
論文名稱: 1氫-1,2,3-三氮唑在銅(100)和氧/銅(100)表面上的熱反應研究
Thermal Chemistry of 1H-1,2,3-Triazole on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 超高真空系統程式控溫反應/脫附(TPR/D)反射式紅外吸收光譜(RAIRS)X-光光電子能譜(XPS)近緣X光吸收細微結構光譜(NEXAFS)銅(100)1氫-1,2,3-三氮唑
外文關鍵詞: 1H-1,2,3-triazole, temperature-programmed reaction/desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure (NEXAFS), Cu(100)
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是在超高真空系統中(UHV),利用程式控溫反應/脫附(TPR/D)、反射式紅外吸收光譜(RAIRS)、X-光光電子能譜(XPS)、近緣X光吸收細微結構光譜(NEXAFS)等表面分析技術研究1H-1,2,3-triazole在銅(100)表面及氧/銅(100)表面的熱反應。
    1H-1,2,3-triazole/Cu(100)在120 K時會以2N、3N鍵結於Cu(100)表面,加熱至130~230 K會先斷N-H鍵偶合成H2脫附,並形成1,2,3-triazole的中間物,表面溫度大於500 K時中間物會斷N-N、C-N、C-C、C-H鍵分解成H2、N2、HCN、CH3CN等產物脫附。
    1H-1,2,3-triazole/O/Cu(100)在120 K時也是以2N、3N鍵結於Cu(100)表面,吸附於表面上的氧原子會抓取N-H的氫原子形成OH(a)並在200~240 K偶合成H¬2O脫附,升溫至460 K左右中間物會與氧原子反應形成H2O、CO2、CO、N2、H2等產物,溫度大於500 K時中間物再分解成N2、HCN、CH3CN、H2、CO2等產物脫附。

    Thermal chemistry of 1H-1,2,3-triazole (C2H3N3) on Cu(100), was studied with temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and near edge X-Ray absorption fine structure (NEXAFS). The TPR/D shows that H2 evolves between 120~230 K, due to 1N-H bond dissociation of the triazole, forming a 1,2,3-triazole intermediate as well. Upon heating to a temperature higher than 500 K, the 1,2,3-triazole begins to decompose into H2, N2, HCN and CH3CN. For 1H-1,2,3-triazole on the oxygen-precovered surface (O/Cu(100)), H2O desorbs between 200K and 240 K resulting from the coupling of surface OH groups, which are generated from reaction of O(a) and the triazole molecule. The 1,2,3-triazole intermediate decomposes to form H2, N2, CO2, and H2O at ~470 K. At ~550 K, H2, N2, HCN, CH3CN and CO2 are also detected.

    第一章 緒論 1 1.1表面化學的發展 1 1.2表面的定義及Cu(100)表面 1 1.3表面吸附 2 1.4真空的定義及應用 3 1.5研究動機及文獻回顧 4 第二章 表面研究與分析技術 9 2.1程序控溫反應脫附 9 2.2 反射式吸收紅外光譜 11 2.3 歐傑電子能譜 14 2.4 X-光光電子能譜 15 2.5 近緣X-光吸收細微結構 17 第三章 實驗系統與方法 21 3.1 超高真空系統 21 3.2 單晶前處理方法 23 3.3 氧化表面製備方法 23 3.4 藥品之前處理方法 23 第四章 結果與討論 25 4.1 1H-1,2,3-triazole 於Cu(100)表面上之程序控溫反應/脫附研究 4.1.1 1H-1,2,3-triazole於Cu(100)表面上的TPR/D研究 25 4.1.2 1H-1,2,3-triazole於O/Cu(100)表面上的TPR/D研究 43 4.2 1H-1,2,3-triazole 於Cu(100)表面上的反射式吸收紅外光譜研究 4.2.1 1H-1,2,3-triazole於Cu(100)表面上的RAIRS研究 60 4.2.2 1H-1,2,3-triazole於O/Cu(100)表面上的RAIRS研究 66 4.3 1H-1,2,3-triazole於Cu(100)表面上的X光光電子能譜(XPS)研究 4.3.1 1H-1,2,3-triazole在Cu(100)表面上的XPS研究 68 4.3.2 1H-1,2,3-triazole在O/Cu(100)表面上的XPS研究 74 4.4 1H-1,2,3-triazole 於Cu(100)表面上的近緣X-光吸收細微結構研究 77 第五章 結論 82 參考文獻 84

    [1] G. A. Somorjai Introduction to Surface Chemistry and Catalysis, Wiley & Sons, New York, 1994.
    [2] G. Ertl, J. Küppers Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, 1985.
    [3] K. Christmann, G. Ertl, T. Pignet Surf. Sci. 1976, 54, 365.
    [4] H. C. Kolb, M. G. Finn , Sharpless KB. Angew. Chem. Int. Ed. Engl. 2001, 40,2004.
    [5] F. Bebensee, C. Bombis, S.-R. Vadapoo, J. R. Cramer, F. Besenbacher, K. V. Gothelf, T. R. Linderoth J. Am. Chem. Soc. 2013, 135, 2136−2139.
    [6] M. H. Shaikh, D. D. Subhedar, F. A. Kalam Khan, J. N. Sangshetti, B. B. Shingate Chin. Chemi. Lett. 2016, 27, 295–301.
    [7] M. Finšgar, I. Milošev Corros. Sci. 2010, 52, 2737–2749.
    [8] B. -S. Fang , C. G. Olson, D. W. Lynch Surf. Sci. 1986, 176, 476-490.
    [9] F. Grillo, D. W. Tee, S. M. Francis, H. Fruchtl, N. V. Richardson Nanoscale, 2013, 5, 5269-5273.
    [10] F. Grillo, D. W. Tee, S. M. Francis, H. A. Fruchtl, N. V. Richardson J. Phys. Chem. C, 2014, 118, 8667-8675.
    [11] C. C. Chusuei, J. V. de la Peña, J. A. Schreifels Rev. Sci. Instrum. 1999, 70, 3719-3722.
    [12] J. F. Walsh, H. S. Dhariwal, A. Gutierrez-Sosa, P. Finetti, C. A. Muryn, N. B. Brookes, R.J. Oldman, G. Thornton Surf. Sci. 1998, 415, 423-432.
    [13] K. Cho, J. Kishimoto, T. Hashizume, H. W. Pickering, T. Sakurai Appl. Surf. Sci. 1995, 87/88, 380-395.
    [14] A. Kokalj, S. Peljhan, J. Koller J. Phys. Chem. C, 2014, 118, 944-954.
    [15] P. A. Redhead, Vacuum 1962, 12, 203-211.
    [16] J. C. Vickerman Surface Analysis-the Principle Techniques; Wiley & Sons: New York, 1997.
    [17]J. Stöhr NEXAFS Spectroscopy, Springer-Verlag, Berlin, 1992
    [18] B. Watts, L. Thomsen, P.C. Dastoor J. Electron. Spectros. Related. Phenom. 2006, 151, 105-120.
    [19] J. L. Solomonr, R.J. Madix, J. Stöhr Surf. Sci. 1991, 155. 12-30.
    [20] M. X. Yang , M. Xi, H. Yuan , B. E. Bent, P. Stevens, J. White Surf. Sci 1995, 341, 9-18.
    [21] 王伯鼎,"Anthradithiophene與其衍生物在金(111)表面上的薄膜成長之研究"國立清華大學化學所碩士論文, 2009.
    [22] 張沛騰,"2-氟乙醇及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向的研究"國立成功大學化學所碩士論文, 2003.
    [23]B. A. Sexton Surf. Sci. 1979, 88, 299-318.
    [24] Spectral Database for Organic Compounds, http://sdbs.db.aist.go.jp
    [25] I. Chorkendorff, P. B. Rasmussen Surf. Sci. 1991, 248, 35-44.
    [26] NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
    [27] T. R. Bryden, S. J. Garrett J. Phys. Chem. B 1999, 103, 10481-10488.
    [28] J. F. Skelly, T. Bertrams, A.W. Munz, M.J. Murphy, A. Hodgson Surf. Sci. 1998, 415, 48-61.
    [29] B. A. Sexton, A. E. Hughes Surf. Sci. 1984, 140, 227-248.
    [30] R. Brosseau, M. R. Brustein, T. H. Ellis Surf. Sci. 1993, 294, 243-250.
    [31] T. Sueyoshi, T. Sasaki, Y. Iwasawa J. Phys. Chem. B 1997, 101, 4648-4655.
    [32] T. H. Ellis, E. J. Kruus, H. Wang J. Vac. Sci. Technol. A 1993, 11, 2117-2121.
    [33] D. Kolovos-Vellianitis, T. Kammler, J. Küppers, Surf. Sci. 2001, 482–485, Part 1, 166-170.
    [34] T. L. Gilchrist, G. E. Gymer, C. W. Rees J. Chem. Soc. Perkin Trans. I 1975, 1.
    [35] T. L. Gilchrist, G. E. Gymer, C. W. Rees J. Chem. Soc. D: Chem. Commun. 1971, 1519.
    [36] E. Borello, A. Zecchina, E. Guglielminotti J. Chem. Soc. B, 1969, 307-311.
    [37] C. Tornkvist, J. Bergman, B. Liedberg J. Phys. Chem. 1991, 3119-3123.
    [38]M. E. Jacox Chem. Phys. 1979, 43, 157-172.
    [39] F. Bebensee, C. Bombis, S. -R. Vadapoo, J. R. Cramer, F. Besenbacher,
    K. V. Gothelf, T. R. Linderoth J. Am. Chem. Soc. 2013, 135, 2136-2139.
    [40] J. -O. Nilsson, C. Törnkvist, B. Liedberg Appl. Sur. Sci. 1989, 37, 306-326.
    [41] I. A. Arkhipushkin, L. I. Yesina, Y. Y. Andreev, L. P. Kazansky, Y. I. Kuznetsov Int. J. Corros. Scale Inhib. 2012, 1, 107-116.
    [42] P. R. Davies, N. Shukla Surf. Sci.1995, 322 , 8.
    [43] M. R. Cohen, R. P. Merrill Langmuir 1990, 6, 1282.
    [44] A. F. Carley, M. Chinn , C. R. Parkinson Surf. Sci., 2003, 537, 64.
    [45] Y. Jiang, J. B. Adams, Surf. Sci. 2003, 529, 428.
    [46] Z. Xu, S. Lau, P. W. Bohn Surf. Sci. 1993, 57-66.
    [47] E. Darlatta, A. Nefedovb, Christoph H. -H. Traulsenc, J. Poppenbergc,
    Wolfgang E.S. Ungera J. Electron Spectrosc. Relat. Phenom 2012, 185 621-624.
    [48] M. J. Thomason, C. R. Seabourne, B. M. Sattelle, G. A. Hembury, J. S. Stevens, A. J. Scott, E. F. Aziz, S. L. M. Schroeder Faraday Discuss. 2015, 179, 269-289.

    下載圖示 校內:2021-07-16公開
    校外:2021-07-16公開
    QR CODE