| 研究生: |
李宗益 Lee, Tsung-I |
|---|---|
| 論文名稱: |
神經滋養因子對於小膠質細胞吞噬作用之影響 Regulation of microglial phagocytosis by distinct neurotrophic factors |
| 指導教授: |
曾淑芬
Tzeng, Shun-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 吞噬作用 、小膠質細胞 、神滋養因子 |
| 外文關鍵詞: | neurotrophin, phagocytosis, microglia |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小膠質細胞位於中樞神經系統為具有吞噬能力的膠質細胞,當腦部組織受到外來損傷時,會引發小膠質細胞的活化進而釋出大量的前發炎因子,進而擴大中樞神經系統的傷害;但是活化的小膠質細胞也會進行吞噬作用清除細胞碎片,並且分泌出神經滋養因子來幫助組織重組。過去研究指出,神經滋養因子可調節發育階段神經元細胞的生長、分化以及突觸的可塑性,又可促進損傷後神經系統的修復;除了神經元細胞之外,膠質細胞不僅可分泌出神經滋養因子,也會表現出其專一性的接受器。然而這些神經滋養因子對於小膠質細胞的調控仍未被深入探討,因此本實驗分為三部份探討神經滋養因子及神經保護藥物對於小膠質細胞的影響:(一) 前處理NT-3於小膠質細胞,可降低由LPS所誘導的NF-κB與DNA結合能力並抑制小膠質細胞吞噬作用之能力。(二) 分別利用GDNF及CNTF處理小膠質細胞,結果發現GDNF可增加細胞內鈣離子濃度及小膠質細胞吞噬作用能力;同樣地,CNTF會增強小膠質細胞的吞噬作用能力,其機制推測透過提升其細胞內鈣離子濃度以及整合蛋白αV的表現;因此可知CNTF及GDNF促進小膠質細胞的吞噬作用為一鈣離子依賴性的機制。(三) 抗癲癇藥物VPA具有神經保護的功效,實驗中發現VPA不會引起小膠質細胞的發炎活化反應,但可增加其吞噬作用的能力。綜合以上結果,推測神經滋養因子及VPA可降低小膠質細胞的發炎反應,更可增加其吞噬作用的能力,而幫助損傷後的中樞神經系統進行組織重組。
Microglia, macrophages of the central nervous system (CNS), are activated following CNS injury and produce proinflammatory mediators which enhance the occurrence of neural degeneration. Yet, activated microglia play a constructive role in tissue remodeling and repair via engulfing cell/tissue debris and secreting neurotrophic/growth factors. Neurotrophic factors (NTs) act as survival factors for neurons, and induce neuronal maturation, and synaptic plasticity in developing CNS. Accordingly, NTs hold a promising effect on neuronal survival and system recovery after CNS injury. In addition to neurons, glia are not only NT-producing cells, but also express their specific receptors. However, little is known whether microglial activity can be mediated by NTs, and subsequently contribute to the protective effect of NTs on neurons and tissue repair in the injured CNS. Here we found that pretreatment with NT-3 pretreatment (pre NT-3) induce inhibition of nucleus factor kappa B (NF-B) activation in lipopolysaccharide (LPS)-treated microglia, which may in turn reduce LPS-induced activation of microglia. Yet, we also observed that microglial phagocytotic ability was slightly attenuated by preNT-3 followed by LPS treatment. On the other hand, treatment with GDNF induced an increase in microglia phagocytotic ability, which is possibly resulted from GDNF-induced increase in [Ca2+]i. Similarly, CNTF increased microglial phagocytotic ability and the expression of integrin av , and [Ca2+]i rise. We also examine whether synthesized neuroprotective drugs can mediate microglial phagocytosis. VPA(Valproic acid), a common anti-seizure drug, did not induce mciroglial inflammatory response. In addition, VPA could enhance microglial phagocytotic ability. Collectively, NTs and VPA can either reduce the production of microglial proinflammatory mediator or enhance microglial phagocytosis to improve neuronal survival and tissue repair.
Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593-623.
Adler R, Landa KB, Manthorpe M, Varon S (1979) Cholinergic neuronotrophic factors: intraocular distribution of trophic activity for ciliary neurons. Science 204:1434-1436.
Albert ML, Kim JI, Birge RB (2000) alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899-905.
Aloisi F (2001) Immune function of microglia. Glia 36:165-179.
Asami T, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S (2006) Autocrine activation of cultured macrophages by brain-derived neurotrophic factor. Biochem Biophys Res Commun 344:941-947.
Barde YA (1988) What, if anything, is a neurotrophic factor? Trends Neurosci 11:343-346.
Bengtsson T, Jaconi ME, Gustafson M, Magnusson KE, Theler JM, Lew DP, Stendahl O (1993) Actin dynamics in human neutrophils during adhesion and phagocytosis is controlled by changes in intracellular free calcium. Eur J Cell Biol 62:49-58.
Blystone SD, Graham IL, Lindberg FP, Brown EJ (1994) Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1. J Cell Biol 127:1129-1137.
Bo L, Peterson JW, Mork S, Hoffman PA, Gallatin WM, Ransohoff RM, Trapp BD (1996) Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol 55:1060-1072.
Cammer W, Zhang H (1996) Carbonic anhydrase II in microglia in forebrains of neonatal rats. J Neuroimmunol 67:131-136.
Chang YP, Fang KM, Lee TI, Tzeng SF (2006) Regulation of microglial activities by glial cell line derived neurotrophic factor. J Cell Biochem 97:501-511.
Chen JC, Ho FM, Pei-Dawn Lee C, Chen CP, Jeng KC, Hsu HB, Lee ST, Wen Tung W, Lin WW (2005) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9-20.
Cheng H, Wu JP, Tzeng SF (2002) Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res 69:397-405.
Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37-44.
Cuadros MA, Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56:173-189.
Daeron M (1997) Structural bases of Fc gamma R functions. Int Rev Immunol 16:1-27.
Demeure CE, Tanaka H, Mateo V, Rubio M, Delespesse G, Sarfati M (2000) CD47 engagement inhibits cytokine production and maturation of human dendritic cells. J Immunol 164:2193-2199.
Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278:27586-27592.
Ebadi M, Bashir RM, Heidrick ML, Hamada FM, Refaey HE, Hamed A, Helal G, Baxi MD, Cerutis DR, Lassi NK (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem Int 30:347-374.
Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311-7316.
Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508-2521.
Ernsberger U, Sendtner M, Rohrer H (1989) Proliferation and differentiation of embryonic chick sympathetic neurons: effects of ciliary neurotrophic factor. Neuron 2:1275-1284.
Fadok VA, Warner ML, Bratton DL, Henson PM (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 161:6250-6257.
Farinas I, Cano-Jaimez M, Bellmunt E, Soriano M (2002) Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res Bull 57:809-816.
Gash DM, Zhang Z, Ai Y, Grondin R, Coffey R, Gerhardt GA (2005) Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol 58:224-233.
Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219-240.
Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18:319-331.
Henderson CE (1996) Role of neurotrophic factors in neuronal development. Curr Opin Neurobiol 6:64-70.
Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Simmons L, Moffet B, Vandlen RA, Simpson LC, et al. (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062-1064.
Hickey WF (1999) The pathology of multiple sclerosis: a historical perspective. J Neuroimmunol 98:37-44.
Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11-25.
Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S (2000) Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res 857:246-251.
Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ, et al. (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69:1121-1132.
Jaconi ME, Lew DP, Carpentier JL, Magnusson KE, Sjogren M, Stendahl O (1990) Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell Biol 110:1555-1564.
Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103-110.
Jones LS (1996) Integrins: possible functions in the adult CNS. Trends Neurosci 19:68-72.
Jutras I, Desjardins M (2005) Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol 21:511-527.
Kahn MA, Ellison JA, Speight GJ, de Vellis J (1995) CNTF regulation of astrogliosis and the activation of microglia in the developing rat central nervous system. Brain Res 685:55-67.
Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701-3711.
Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. Embo J 22:3411-3420.
Leitinger B, McDowall A, Stanley P, Hogg N (2000) The regulation of integrin function by Ca(2+). Biochim Biophys Acta 1498:91-98.
Li R, El-Mallahk RS (2000) A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency. Neurosci Lett 294:147-150.
Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1-7.
Majed HH, Chandran S, Niclou SP, Nicholas RS, Wilkins A, Wing MG, Rhodes KE, Spillantini MG, Compston A (2006) A novel role for Sema3A in neuroprotection from injury mediated by activated microglia. J Neurosci 26:1730-1738.
Markus A, Patel TD, Snider WD (2002) Neurotrophic factors and axonal growth. Curr Opin Neurobiol 12:523-531.
Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045-1053.
Milner R, Campbell IL (2002) The integrin family of cell adhesion molecules has multiple functions within the CNS. J Neurosci Res 69:286-291.
Mitsumoto H, Tsuzaka K (1999) Neurotrophic factors and neuromuscular disease: I. General comments, the neurotrophin family, and neuropoietic cytokines. Muscle Nerve 22:983-999.
Mora A, Gonzalez-Polo RA, Fuentes JM, Soler G, Centeno F (1999) Different mechanisms of protection against apoptosis by valproate and Li+. Eur J Biochem 266:886-891.
Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng J, Ehrhart J, Mullan M, Tan J (2004) Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46:369-379.
Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4:65-84.
Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T (2001) Neurotrophin secretion from cultured microglia. J Neurosci Res 65:322-331.
Nitschke L (2005) The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol 17:290-297.
Oldenborg PA, Gresham HD, Lindberg FP (2001) CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 193:855-862.
Onofrj M, Thomas A, Paci C (1998) Reversible parkinsonism induced by prolonged treatment with valproate. J Neurol 245:794-796.
Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 134:162-169.
Pinkstaff JK, Detterich J, Lynch G, Gall C (1999) Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci 19:1541-1556.
Pommier CG, Inada S, Fries LF, Takahashi T, Frank MM, Brown EJ (1983) Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J Exp Med 157:1844-1854.
Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16:421-432.
Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275-290.
Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358-1367.
Rezaie P, Lantos PL (2001) Microglia and the pathogenesis of spongiform encephalopathies. Brain Res Brain Res Rev 35:55-72.
Ross GD (2000) Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit Rev Immunol 20:197-222.
Sawyer DW, Sullivan JA, Mandell GL (1985) Intracellular free calcium localization in neutrophils during phagocytosis. Science 230:663-666.
Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345:440-441.
Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233-247.
Tai MH, Cheng H, Wu JP, Liu YL, Lin PR, Kuo JS, Tseng CJ, Tzeng SF (2003) Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Exp Neurol 183:508-515.
Tunnicliff G (1999) Actions of sodium valproate on the central nervous system. J Physiol Pharmacol 50:347-365.
Tzeng SF, Huang HY, Lee TI, Jwo JK (2005) Inhibition of lipopolysaccharide-induced microglial activation by preexposure to neurotrophin-3. J Neurosci Res 81:666-676.
Ullrich O, Diestel A, Eyupoglu IY, Nitsch R (2001) Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol 3:1035-1042.
Witting A, Muller P, Herrmann A, Kettenmann H, Nolte C (2000) Phagocytic clearance of apoptotic neurons by Microglia/Brain macrophages in vitro: involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J Neurochem 75:1060-1070.
Woo MS, Jang PG, Park JS, Kim WK, Joh TH, Kim HS (2003) Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res Mol Brain Res 113:86-96.
Wright SD, Griffin FM, Jr. (1985) Activation of phagocytic cells' C3 receptors for phagocytosis. J Leukoc Biol 38:327-339.
Yokogami K, Wakisaka S, Avruch J, Reeves SA (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10:47-50.
Yu N, Zhang X, Magistretti PJ, Bloom FE (1998) IL-1-alpha and TNF-alpha differentially regulate CD4 and Mac-1 expression in mouse microglia. Neuroimmunomodulation 5:42-52.
Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 276:31674-31683.