簡易檢索 / 詳目顯示

研究生: 吳書帆
Wu, Shu-Fan
論文名稱: 多重尺度CGMD在奈米壓痕的應用
Applications of multiscale CGMD on nanoindentation
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 86
中文關鍵詞: 勢能函數奈米壓痕多尺度模擬分子動力學
外文關鍵詞: Finite Element Method, Multi-scale simulation, Coarse Grained Molecular Dynamics, nanoindentation
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Coarse Grained Molecular Dynamics (CGMD) 為分子動力學(MD)的一種延伸方法。此法能夠藉由擷取一團原子群重要特徵之方式,來達到以較少的節點數取代多數原子做運算之目的。因此CGMD不但能夠比MD節省運算時間,在多尺度的模擬上(multi-scale simulation),更能針對其物理特性的不同,靈活的對系統做適當的尺度變換。

      CGMD法簡化粒子數的方式主要是源自於有限元素法概念,其運動方程式的推導乃是由MD法經由統計力學之處理所求得,所以CGMD在處理多尺度問題時,由於系統內不同尺度仍處於相同的理論基礎,因此能夠成功解決跨尺度模擬時在接合面所產生之不連續問題。

      雖然CGMD 擁有簡化粒子數與變換尺度之優點,但此法之發展仍處於發展階段,而尋找適當方法來正確描述節點勢能將是解決CGMD法限制之關鍵。本研究中除將CGMD法做更完整的理論推導外,更將CGMD法運用於奈米壓痕上,並將得到的結果與MD做比較。

      經過電腦模擬後可以得到如下結論:(1)CGMD與MD在奈米壓痕的變形機制與物理行為是很接近的。(2)由CGMD力量位移曲線所估算的薄膜基板材料性質較MD略高一些。(3)CGMD模擬時間約為MD的1/5~1/10。

     Coarse Grained Molecular Dynamics (CGMD) is a technique for simulation extended from Molecular Dynamics (MD). It captures the important atomistic effects with fewer nodes instead of atoms so that CGMD can not only effectively save more computational cost than MD but it also can vary its scale to describe the system more appropriate in multi-scales simulation.

     The concept of CGMD utilizes Finite Element Method (FEM) to reduce the number of atoms. And the equations of motion are derived directly from MD through a statistical procedure so that the different scales are run concurrently with the same model in multi-scale simulation. Therefore, this allows a seamless coupling of length scales.

     Despite its above advantages above mentioned, CGMD model is still in development. The determination of appropriate potential function for describing the CGMD model is the key to solve the limitations. This paper not only derive the CGMD theory, but also implement this theory to nanoindentation. Moreover, simulation results are compared with MD.

     After computer simulations, We have some conclusions and are listed as follows: (1) The physical phenomenon of nanoindentation deformation computed by CGMD and MD methods are very close. (2) The Young’s modulus and hardness predicted by CGMD are a little bit higher than MD. (3) The computational time of CGMD is only one-fifth to one-tenth as long as MD.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明 xi 第1章 緒論 1 1-1 動機 1 1-2 從MD到CGMD 2 1-3 奈米壓痕之文獻回顧 3 1-4 本文架構 4 第2章 分子動力學基本原理 5 2-1 分子動力學之基本理論與假設 5 2-2 分子間作用力與勢能函數 6 2-3 無因次化 8 2-4 初始位置之決定 9 2-5 初始速度之決定 10 2-6 週期邊界與最小映像法則 12 2-7 預測修正法(Gear’s Predictor-Corrector Algorithms) 13 2-8 截斷半徑與鄰近表列法 15 2-9 原子級之應力 20 2-10 奈米壓痕試驗之硬度與彈性模數理論建立 21 第3章 CGMD之理論架構 26 3-1 CGMD Hamiltonian 26 3-2 CGMD勢能函數 28 3-3 勢能基底轉換用泰勒展開逼進法 28 3-4 勢能狀態擬合 31 3-5 最小晶胞取代 37 3-6 CGMD下的應力表示式 38 3-7 從CGMD到FEM 42 第4章 CGMD模擬結果分析與討論 45 4-1 模擬流程規劃 45 4-2 壓痕的變形過程與機制 50 4-3 CGMD與分子動力學的結合 58 4-4 壓痕尺寸效應的影響 61 4-5 模擬結果與分子動力學比較 65 第5章 結論與未來展望 68 5-1 結論 68 5-2 未來展望 69 參考文獻 70 自述 72

    [1] R. E. Rudd and J. Q Broughton,“Coarse-grained Molecular Dynamics and Atomic Limit of Finite Elements”, Phys. Rev. B, Vol. 58, No. 10, pp. R5893-R5896, 1998.
    [2] G. Z. Voyiadjis,“Coupling Length Scales for Multi-scale Atomistic -Continuum Simulations: Atomistically Induced Stress Distribution in Si/Si3N4 Nanopixels”, Phys. Rev. Lett., Vol. 87, No. 8, pp. 086104_1-086104_4, 2001.
    [3] U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation and Fracture ” , Science, Vol. 248, No. 4954, pp. 454-461, 1990
    [4] W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res.7, pp. 1564-1583 , 1992
    [5] J. Shimizu, H. Eda, M. Yoritsune and E. Ohmura,“Molecular dynamics simulation of friction on the atomic scale”, Nanotechnology, 9, No2, pp. 118 -123 1998.
    [6] F. N. Dzegilenko, D. Srivastava and S. Saini,“Nanoscale etching and indentation of a silicon(001) surface with carbon nanotube tips”, Nanotechnology, 11, No3, pp253-257 2000.
    [7] T. H. Fang,“Study on the Nano-scale Processing Technology Using Atomic Force Microscopy,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000
    [8] J. E. Lennard-Jones, Proc. Roy. Soc. London, 1924
    [9] L. A. Girifalco and V. G. Weizer,“Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No.3, pp. 687-690, 1959.
    [10] R. A. Johnson,“Analytic nearest-neighbor model for fcc metals”, Phys. Rev. B, Vol. 37, pp. 3847-4339, 1987.
    [11] S. M. Foiles , M. I. Baskes and M. S. Daw,“Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev.B, Vol. 33, No. 12, pp. 7983-7911, 1986.
    [12] M. S. Daw, S. M. Faoiles and M. I. Baskes,“The embedded-atom method: a review of theory and applications”, Material Science Report.,Vol 9, pp. 251-310, 1993.
    [13] M. I. Baskes, J. S. Nelson and A. F. Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium”, Phys. Rev. B, Vol. 40, No. 9, pp. 6085-6100, 1989.
    [14] M. I. Baskes,“Modified embedded-atom potentials for cubic materials and impurities”, Phys. Rev. B, Vol. 46, No. 5, pp. 2727-2742 , 1992.
    [15] J. M. Hailie,“Molecular Dynamics Simulation Elementary Method”, New York: Wiley, 1993
    [16] T.Iwaki, “Molecular Dynamic Study on Stress-Strain in Very Thin Film” , JSME Int. J, Ser.A, Vol. 39, No.3, pp.346-353, 1988.
    [17] 陳冠維, 掃描式探針顯微鏡摩擦力檢測應用於不繡鋼氮離子植佈技術之建立及材料微奈米機械性質檢測, 國立成功大學, 碩士論文, (2003).
    [18] I. N. Sneddon, Int. J. Engng Sci,“The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile”, Vol. 3, pp. 47-53, 1965.
    [19] R. B. King, Int. J. Solids Structure,“Elastic analysis of some punch problems for a layered medium ”, Vol. 23, pp. 1657-1664, 1987.
    [20] J. B. Pethica, R. Hutchings and W. C. Oliver, Philos. Mag. , Vol. 48, pp. 593-597, 1983.
    [21] 陳書偉, CGMD法應用於奈米銅結構之力學行為探討, 國立成功大學, 碩士論文, 2005.
    [22] R. L.Burden, “Numerical Analysis”, PS-KENT, 1993.
    [23] 林彥宏, 奈米壓痕之表面層效應與結構變化探討, 國立中正大學, 碩士論文, 2005.
    [24] R. J. Stokes, " Fundamentals Of Interfacial Engineering", Wiley-Vch, 2001.
    [25] 陳道隆, 量子系統之混合表象與高度應變率對奈米金線力學行為之影響, 國立成功大學, 博士論文, 2005

    下載圖示 校內:2007-07-10公開
    校外:2007-07-10公開
    QR CODE