簡易檢索 / 詳目顯示

研究生: 饒明哲
Rao, Ming-Jhe
論文名稱: 機器學習應用於螺槳噪聲實驗量測辨識之研究
Research on Machine Learning for Propeller Noise Measurements and Target Recognitions
指導教授: 涂季平
Too, Gee-Pinn
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 91
中文關鍵詞: 時間反轉法倒傳遞神經網路支持向量機螺槳噪聲量測
外文關鍵詞: Neural Network, Support Vector Machine, Time Reversal Method, Propeller noise measurement
相關次數: 點閱:102下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將採用機器學習中的倒傳遞神經網路(Back-propagation Network, BPN)以及支持向量機(Support Vector Machine, SVM)兩種不同的方法對兩顆不同的螺槳產生之噪聲訊號進行螺槳聲場的辨識與分類,預期將會使用BPN進行螺槳聲場的轉速辨識以及分類、使用SVM進行螺槳聲場的辨識,並加以比較兩種不同的方法對於螺槳分類之結果有何差異之處。
    船艦的水下聲紋資料的取得十分困難,故本研究使用成功大學拖航水槽與單獨螺槳試驗機進行螺槳噪聲資料之量測。由於成功大學拖航水槽的槽壁並無加裝防止迴響之吸音材,所以本研究使用時間反轉法(Time Reversal Method, TRM)將量測到的噪聲訊號進行還原,並加以比較還原前後對於機器學習預測的成效差異。
    根據本研究之成果,當螺槳噪聲經過時間反轉法的還原後,其預測成果皆有顯著之提升,而透過減少訓練資料比對之成果,我們可了解到傳遞神經網路訓練資料量與預測成果之相對關係。

    This research applies the neural network and support vector machine to identify and classify the noise signals generated by two different propellers. It is expected that neural network will be used to predict the propeller rotating speed and the classification of the number of blades, and the SVM algorithm will be used to classify the number of propeller blades, and to compare the two different methods is for the propeller classification.
    In addition, Time Reversal Method is used to restore the signal to improve the prediction results of neural network and SVM. The results show that the improvement effects of TRM on the two machine learning methods.
    According to the results of this study, it can be found that after the propeller noise is restored by time reversal method, the prediction results are significantly improved. Reducing training data will give poor prediction via the neural network. Therefore, it is important to make sure the sufficient data is used for the databases.

    摘要 I Extended Abstract II 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVII 第一章概論 1 1.1研究動機 1 1.2文獻回顧 2 1.2.1水下螺槳噪聲量測相關文獻 2 1.2.2機器學習與類神經網路相關之海洋研究文獻 3 1.3研究流程 6 1.4論文架構 7 第二章螺槳噪聲量測實驗 8 2.1實驗環境與配置 8 2.2實驗設備與項目 11 2.3實驗流程 17 2.4量測資料校正 18 第三章 理論介紹 25 3.1倒傳遞神經網路 25 3.1.1倒傳遞神經網路概論 25 3.1.2倒傳遞網路演算法 28 3.1.3早停法(Early Stopping) 35 3.1.4 類神經網路輸入特徵 39 3.1.5本研究使用之網路架構 43 3.2支持向量機(Support Vector Machine) 45 3.2.1 SVM理論介紹 45 3.2.2 SVM輸入特徵值 50 3.3時間反轉法 51 3.3.1 時間反轉法理論介紹 51 3.3.2時間反轉法之訊號還原流程 53 第四章結果分析與討論 54 4.1 螺槳噪聲實驗量測結果 54 4.1.1 CH1水聽器量測成果 54 4.1.2 CH2水聽器量測成果 60 4.1.3 CH3水聽器量測成果 63 4.2原始量測資料預測及判斷成果及比較 67 4.2.1 螺槳葉片數判斷成果 67 4.2.2 螺槳轉速預測成果 71 4.3 時間反轉法前後預測成果比較 74 4.3.1 時反後螺槳葉片數判斷成果 75 4.3.2 時反後螺槳轉速預測成果 77 4.4減少訓練資料對於模型影響之比較 81 第五章結論與未來展望 87 5.1結論 87 5.2未來展望 88 參考文獻 89

    [1] H. Seol, B. Jung, J.-C. Suh, and S. Lee, "Prediction of non-cavitating underwater propeller noise," Journal of Sound and Vibration, vol. 257, no. 1, pp. 131-156, 2002.
    [2] J. Bosschers, F. Lafeber, J. de Boer, R. Bosman, and A. Bouvy, "Underwater radiated noise measurements with a silent towing carriage in the Depressurized Wave Basin," in AMT Conference, Gdansk, 2013.
    [3] ITTC, "Model-Scale Propeller Cavitaion Noise Measurements," ITTC Recommended Procedures and Guidelines 2017.
    [4] J. Bosschers et al., "The Specialist Committee on Hydrodynamic Noise," 2017.
    [5] W. Soares-Filho, J. M. de Seixas, and L. P. Caloba, "Averaging spectra to improve the classification of the noise radiated by ships using neural networks," in Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, IEEE, pp. 156-161,2000.
    [6] M. Zhu, A. Hahn, Y.-Q. Wen, and A. Bolles, "Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm," Applied Ocean Research, vol. 68, pp. 249-261, 2017.
    [7] M. Khishe and M. R. Mosavi, "Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm," Applied Acoustics, vol. 157, 2020.
    [8] W. B. Qiao, M. Khishe, and S. Ravakhah, "Underwater targets classification using local wavelet acoustic pattern and Multi-Layer Perceptron neural network optimized by modified Whale Optimization Algorithm," Ocean Engineering, vol. 219, 2021.
    [9] D. Borkowski, "Identification of the optimal control characteristics of a small hydropower plant using artificial neural networks and the support vector machines method," Journal of Hydraulic Research, vol. 57, no. 5, pp. 715-723, 2019.
    [10] 王思皓, "拖航水槽之螺槳噪聲標準量測分析技術建立," 碩士, 系統及船舶機電工程學系碩博士班, 國立成功大學, 台南市, 2021.
    [11] 羅華強, 類神經網路-MATLAB的應用. 新竹市: 清蔚科技股份有限公司, 2001.
    [12] 張書榮, "應用類神經網路於水面船艦目標之識別," 碩士, 系統及船舶機電工程學系碩博士班, 國立成功大學, 台南市, 2012.
    [13] H. Yu and B. M. Wilamowski, "Levenberg-marquardt training," Industrial electronics handbook, vol. 5, no. 12, p. 1, 2011.
    [14] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
    [15] (2020). 區塊鏈分析中的過度擬合挑戰[Online]. Available: https://tw.icointime.com/post/164508423953.html.
    [16] T. Fletcher, "Support vector machines explained," Tutorial paper., Mar, p. 28, 2009.
    [17] 盧奕中, "運用機器學習之支援向量機進行船艦分類及辨識" 碩士, 系統及船舶機電工程學系碩博士班, 國立成功大學, 台南市, 2020.
    [18] 許莅樺, "水下通訊應用於海洋聲場" 碩士, 系統及船舶機電工程學系碩博士班, 國立成功大學, 台南市, 2018..
    [19] 涂季平, 工程聲學量測理論與應用講義. 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE