| 研究生: |
黃柏翰 Huang, Po-Han |
|---|---|
| 論文名稱: |
以自製可調速之滾筒式生物反應器誘導脂肪幹細胞於聚己內酯多孔支架上分化成平滑肌細胞 Induced Smooth Muscle Cell Differentiation from Adipose-Derived Stem Cells on Polycaprolactone Porous Scaffold with a Rotating Wall Vessel Bioreactor |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 血管組織工程 、小管徑人工血管 、聚己內酯血管支架 、鹽析法 、脂肪幹細胞 、平滑肌細胞 、幹細胞分化 、滾筒式生物反應器 |
| 外文關鍵詞: | Vascular tissue engineering, small-diameter vascular graft, PCL scaffold, salt-leaching technique, adipose-derived stem cells, smooth muscle cells, stem cell differentiation, rotating wall vessels bioreactor |
| 相關次數: | 點閱:182 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據世界衛生組織(WHO)的統計,缺血性心臟病(ischemic heart disease, IHD)為全球人口十大死因之中排名第一位,並在2016年導致全球約九百多萬人喪命,且於過去15年中始終居高不下,是全體人類須共同面臨之一大醫療挑戰。
當前臨床上所採用之醫療手段,視病情嚴重性可依序分為藥物治療、血管修復手術、血管支架植入及血管取代手術。在血管取代手術方面,過去常見的自體血管移植常採用患者自身腿部的隱靜脈進行冠狀動脈繞道手術,但研究指出由於靜脈與動脈間力學性質差異所導致的應力不匹配,往往容易引起內膜增生與血管硬化而降低癒後品質,甚至必須進行二次手術。有鑑於此,血管組織工程領域開始注重小管徑血管支架的研究與開發,以期能開發出具有良好生物相容性與力學強度之血管支架用於血管取代手術。
現行之小管徑血管製備技術眾多,包含使用去細胞技術的天然血管支架,或以高分子材料所合成的可降解與不可降解之血管支架,甚至結合生長因子(growth factor)來促進細胞貼附生長,或利用幹細胞分化技術加速血管重建。
本研究採用聚己內酯(polycaprolactone, PCL)作為基材,並以加熱塑型的方式加上鹽析法(salt-leaching technique)來製備多孔性血管支架,並以環狀拉伸試驗評估其力學性質;另外也採用了傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)及接觸角測量等方式,檢驗結合了聚多巴胺(polydopamine, PDA)與明膠(gelatin, GE)塗層的表面改質。此外本研究亦自製可調速之滾筒式生物反應器(rotating wall vessel bioreactor, RWV bioreactor),搭配自紐西蘭大白兔背部脂肪組織萃取出的脂肪幹細胞(adipose-derived stem cell, ADSC)進行動態培養,以期能以動態培養的方式帶動流體對細胞進行力學性刺激,取代以生長因子誘導的方式來促進幹細胞進行分化,並以冷凍切片與免疫螢光染色的方式,對脂肪幹細胞與平滑肌細胞(smooth muscle cell, SMC)所攜帶的特定蛋白進行辨識與標記。
本研究最後分別成功製備出具有良好力學性質之聚己內酯多孔性支架及品質穩定之製程;成功確認表面改質所改善之材料親疏水性;建構出低成本且可運作之滾筒式生物反應器,並提供無菌且可氣體交換之培養腔室來對幹細胞進行動態培養;以免疫螢光染色觀察到增量的肌原蛋白(myogenic protein)表現量,藉此確認脂肪幹細胞於生物反應器內的分化潛力與此方法之可行性。本研究作為一個前驅性研究,建立了一套可行的血管支架製備流程與策略,為後續更深入的研究奠定了良好的基礎。
According to the statistics reported by the World Health Organization (WHO), ischaemic heart disease (IHD) was the number 1 cause of deaths among the top 10 global causes. IHD claimed over 9 million lives in 2016 and has remained the leading cause of death for the last 15 years. This disease is an excellent challenge to all mankind.
The current clinical treatments are medical treatment, angioplasty, stent implantation and surgical intervention, depending on the stage of vascular disease. For surgical intervention, the saphenous vein was once the standard choice for coronary artery bypass surgery (CABG). However, researches showed that the compliance mismatch caused by different mechanical properties between arteries and veins tended to lead to intimal hyperplasia and atherosclerosis, which gave a poor prognosis and sometimes even required a secondary surgical intervention. As a result, the development of small-diameter vascular graft draws more and more attention in vascular tissue engineering. The final goal is to fabricate a vascular graft with good biocompatibility and adequate mechanical properties for vascular replacement.
There are now various techniques for fabricating a vascular graft, including decellularized native scaffold, degradable/non-degradable synthetic polymeric scaffold, a combination of growth factors to promote cell adhesion and proliferation, and vascular reconstruction using stem cell differentiation.
This study used polycaprolactone (PCL) as the base material to fabricate a porous scaffold with heating process and salt-leaching technique. We also measured the mechanical properties of the scaffold with ring tensile test. Fourier transform infrared spectroscopy (FTIR) and contact angle measurement were employed to verify the surface modification of polydopamine and gelatin-coating layers. Also, we combined a self-made rotating wall vessel (RWV) bioreactor with adipose-derived stem cells (ADSCs) from the back adipose tissue of New Zealand White Rabbit to perform dynamic culture, presuming the fluid flow could stimulate the differentiation of stem cell instead of growth factors. After giving a one-week dynamic culture, we performed cryo-sectioning and immunofluorescence staining to identify certain cell markers that were reported to be specific to ADSCs and smooth muscle cells.
This study successfully developed a PCL porous scaffold with good mechanical properties and a stable manufacturing process; we verified the improved hydrophilicity that came from surface modification; we built a cheap and functional RWV bioreactor with sterilized culture chambers that free gas exchanged was allowed; the differentiation potential of ADSC in a bioreactor was confirmed through the increased expression of myogenic protein. In conclusion, this study built a feasible protocol for PCL vascular scaffold and laid a foundation for the following studies.
1. WHO. Cardiovascular diseases (CVDs). 2017; Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2. Kevin J. Croce, P.L., Intertwining of thrombosis and inflammation in atherosclerosis. Current Opinion in Hematology, 2007. 14(1): p. 55-61.
3. Lindemann S, K.B., Seizer P, Gawaz M, Platelets, inflammation and atherosclerosis. Journal of Thrombosis and Haemostasis, 2007. 5: p. 203-211.
4. Michael C. Berndt, Y.-j.S., Sacha M. Dopheide, Elizabeth E Gardiner, Robert K Andrews, The vascular biology of the glycoprotein Ib-IX-V complex. Thrombosis and Haemostasis, 2001. 86(1): p. 178-188.
5. Nageswara Rao Madamanchi, S.L., Christine Patterson, Marschall S. Runge, Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. Journal of Biological Chemistry, 2001. 276(22): p. 18915-18924.
6. Timothy M Sullivan, S.D.A., Eugene Michael Langan, Spence McLean Taylor, Bruce Alan Snyder, David Cull, Jerry R. Youkey, Martine Laberge, Effect of endovascular stent strut geometry on vascular injury, myointimal hyperplasia, and restenosis. Journal of Vascular Surgery, 2002. 36(1): p. 143-149.
7. Dario Buccheri, D.P., Giuseppe Andolina, Bernardo Cortese, Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. Journal of Thoracic Disease, 2016. 8(10): p. E1150-E1162.
8. Jaroslav Chlupáč, E.F., Lucie Bačáková, Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiological Research, 2009. 58: p. S119-S139.
9. Testart, J., Jean Kunlin (1904-1991). Annals of Vascular Surgery, 1995. 9: p. S1-S6.
10. Margreet R. de Vries, K.H.S., J Wouter Jukema, Jerry Braun, Paul H A Quax, Vein graft failure: From pathophysiology to clinical outcomes. Nature Reviews Cardiology, 2016. 13(8): p. 451-470.
11. Ruben Yap Kannan, H.J.S., Peter Edward Butler, George Heard Hamilton, Alexander M. Seifalian, Current status of prosthetic bypass grafts: A review. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005. 74B(1): p. 570-581.
12. Neelima Thottappillil, P.D.N., Scaffolds in vascular regeneration: current status. Vascular Health and Risk Management, 2015. 11: p. 79-91.
13. Francesca Boccafoschi, M.B., L Fusaro, Francesco Copes, Martina Ramella, Mario F Cannas, Decellularized biological matrices: An interesting approach for cardiovascular tissue repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017. 11(5): p. 1648-1657.
14. Xiangkui Ren, Y.F., Jintang Guo, Haixia Wang, Qian Li, Jing Yang, Xuefang Hao, Juan Lv, Nan Ma, Wenzhong Li, Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chemical Society Reviews, 2015. 44(15): p. 5680-5742.
15. Zheng-ming Huang, Y.Z., Masaya Kotaki, Seeram Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
16. Steven G. Friedman, R.S.L., Leslie Spier, Carmine G. Moccio, Anthony J. Tortolani, A prospective randomized comparison of Dacron and polytetrafluoroethylene aortic bifurcation grafts. Surgery, 1995. 117(1): p. 7-10.
17. William Weintraub, E.L.J., Joseph M. Craver, Robert A. Guyton, Frequency of repeat coronary bypass or coronary angioplasty after coronary artery bypass surgery using saphenous venous grafts. American Journal of Cardiology, 1994. 73(2): p. 103-112.
18. Christophe Camiade, A.M., J. Ricco, Jérôme Roumy, Guillaume Febrer, Christophe Marchand, J Neau, Carotid bypass with polytetrafluoroethylene grafts: A study of 110 consecutive patients. Journal of Vascular Surgery, 2003. 38(5): p. 1031-1037.
19. Alexander M. Seifalian, H.J.S., Alok Tiwari, Alan Edwards, Staffan Bowald, George Heard Hamilton, In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003. 24(14): p. 2549-2557.
20. Chaojing Li, F.W., Graeham Rees Douglas, Ze Zhang, Robert Guidoin, Lu Wang, Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 69: p. 39-49.
21. Haifeng Liu, X.L., Xufeng Niu, Gang Zhou, Ping Li, Yubo Fan, Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Biomacromolecules, 2011. 12(8): p. 2914-2924.
22. Mohammed Awad Abedalwafa, F.W., Lu Wang, Chaojing Li, Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Reviews on Advanced Materials Science, 2013. 34(2): p. 123-140.
23. Jianyuan Hao, M.Y., Xianmo Deng, Biodegradable and biocompatible nanocomposites of poly(epsilon-caprolactone) with hydroxyapatite nanocrystals: Thermal and mechanical properties. Journal of Applied Polymer Science, 2002. 86(3): p. 676-683.
24. Nadeem Siddiqui, S.A., Bhaskar Birru, Ramaraju Baadhe, Sreenivasa Rao, PCL-based composite scaffold matrices for tissue engineering Applications. Molecular Biotechnology, 2018. 60(7): p. 506-532.
25. Yongzhen Wei, Y.W., Runxia Zhao, Kaiyue Zhang, Adam C Midgley, Deling Kong, Zongjin Li, Qiang Zhao, MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials, 2019. 204: p. 13-24.
26. Diana Catalina Ardila, E.A.T., T. Doetschman, W.R. Wagner, and J.P.V. Geest, Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering. Journal of Controlled Release, 2019. 299: p. 44-52.
27. Sang Jin Lee, M.E.K., Haram Nah, Ji Min Seok, Myung Ho Jeong, Kwangsung Park, Il Keun Kwon, Jun Sik Lee, Su A Park, Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. Journal of Colloid and Interface Science, 2019. 537: p. 333-344.
28. Ivan Martin, D.W., Michael Heberer, The role of bioreactors in tissue engineering. Trends in Biotechnology, 2004. 22(2): p. 80-86.
29. Y. Sayegh Martin, P.V., Bioreactors for tissue mass culture: Design, characterization, and recent advances. Biomaterials, 2005. 26(35): p. 7481-7503.
30. Hera Andrade-Zaldívar, L.S., Antonio León Rodríguez, Expansion of human hematopoietic stem cells for transplantation: trends and perspectives. Cytotechnology, 2008. 56(3): p. 151-160.
31. Andrea Lynn Radtke, M.M.H.-K., Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. Journal of Visualized Experiments: JoVE, 2012(62): p. 10.
32. Navran, S.S., The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Biotechnology annual review, 2008. 14: p. 275-296.
33. Jennifer Barrila, A.L.R., Aurélie Crabbé, Shameema F. Sarker, Melissa M Herbst-Kralovetz, Christina M Ott, Cheryl A Nickerson, Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nature Reviews Microbiology, 2010. 8(11): p. 791-801.
34. Yu, T.-C., Polycaprolactone Combined with Platelet-Rich Fibrin and Adipose-Derived Stem Cells for Endothelialized Small Caliber Vascular Graft in Bioreactor System, in Department of Biomedical Engineering. 2016, National Cheng Kung University.
35. Qi Chong Xing, Z.Q., Mitchell D Tahtinen, Ai Hui Yap, Keegan M. Yates, Feng Zhao, Aligned nanofibrous cell-derived extracellular matrix for anisotropic vascular graft construction. Advanced Healthcare Materials, 2017. 6(10): p. 9.
36. Zhaodi Gong, L.E.N., Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 2008. 22(6): p. 1635-1648.
37. Véronique Laterreur, J.R., François A Auger, Karine Vallières, Catherine V. Tremblay, Dan A Lacroix, Maxime Y. Tondreau, Jean-Michel Bourget, Lucie Germain, Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 34: p. 253-263.
38. Ayako Oyane, H.-M.K., Takuo Furuya, Tadashi Kokubo, Toshiki Miyazaki, Takashi Nakamura, Preparation and assessment of revised simulated body fluids. Journal of Biomedical Materials Research Part A, 2003. 65A(2): p. 188-195.
39. Alessandro Polini, D.P., Manuela Parodi, Rodolfo Quarto, Silvia Scaglione, Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. Plos One, 2011. 6(10): p. 8.
40. Laleh Ghasemi-Mobarakeh, M.P.P., Mohammad Monir Morshed, Mohammad-Hossein Nasr-Esfahani, Seeram Ramakrishna, Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 2008. 29(34): p. 4532-4539.
41. Farnaz Ghorbani, A.Z., Aliasghar Behnamghader, Morteza Daliri Joupari, A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. Materials Science & Engineering C-Materials for Biological Applications, 2019. 94: p. 729-739.
42. Hongyong Luo, C.G., Weihua Zheng, Fei Dai, Xinling Wang, Zhen Zheng, Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. Rsc Advances, 2015. 5(18): p. 13470-13477.
43. Sneh Gautam, C.-F.C., Amit Kumar Dinda, Pravin D. Potdar, Narayan Chandra Mishra, Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. Journal of Materials Science, 2014. 49(3): p. 1076-1089.
44. Mattil a Hiob, S.S., Lisa Muiznieks, Anthoy S Weiss, Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. Acs Biomaterials Science & Engineering, 2017. 3(5): p. 712-723.
45. Mark C. Varley, A.E.M., Roger Audley Brooks, Effect of rotation on scaffold motion and cell growth in rotating bioreactors. Tissue Engineering Part A, 2017. 23(11-12): p. 522-534.
46. Yong Sang Cho, S.I.K., Hyung-Keun You, Young-Sam Cho, A novel technique for scaffold fabrication: SLUP (salt leaching using powder). Current Applied Physics, 2014. 14(3): p. 371-377.
47. Azhang Hamlekhan, F.M., Masoud Mozafari, Mahmoud Azami, Nader Nezafati, Preparation of laminated poly(ε-caprolactone)-gelatin-hydroxyapatite nanocomposite scaffold bioengineered via compound techniques for bone substitution. Biomatter, 2011. 1(1): p. 91-101.
48. Vahideh Raeisdasteh Hokmabad, S.D., Ali Ramazani, Roya Salehi, Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering. Journal of Biomaterials Science-Polymer Edition, 2017. 28(16): p. 1797-1825.
49. Raheleh Safaeijavan, M.S., Adeleh Divsalar, Akram Eidi, Abdolreza Ardeshirylajimi, Biological behavior study of gelatin coated PCL nanofiberous electrospun scaffolds using fibroblasts. Journal of Paramedical Sciences (JPS), 2014. 5(1): p. 67-73.
50. Sung Ju Cho, S.M.J., Munhyung Kang, Hwa Sung Shin, Ji Ho Youk, Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer, 2015. 69: p. 95-102.
51. Weiguang Wang, G.C., William Stephen Ambler, Jonny James Blaker, Marco Andrey Cipriani Frade, Parthasarathi Mandal, Carl Diver, Paulo J. S. Bártolo, Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials, 2016. 9(12): p. 11.
52. Vincent Ball, D.D.F., Valérie Toniazzo, David S. Ruch, Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. Journal of Colloid and Interface Science, 2012. 386: p. 366-372.
53. Sabik, J.F., Understanding Saphenous Vein Graft Patency. Circulation, 2011. 124(3): p. 273-275.
54. Yong Sang Cho, M.W.H., Meiling Quan, So-Youn Kim, Se-Hwan Lee, Seung-Jae Lee, Young Yul Kim, Young-Sam Cho, Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold. Journal of Biomedical Materials Research Part A, 2017. 105(12): p. 3432-3444.
55. Colin Geoffrey. Pitt, F.I.C., Y. M. Hibionada, Denise M. Klimas, Anton Karel Schindler, Aliphatic polyesters. I. The degradation of poly(ϵ‐caprolactone) in vivo. Journal of Applied Polymer, 1981. 26(11): p. 3779-3787.
56. Michał Dziadek, B.Z., Elzbieta Menaszek, Katarzyna Cholewa-Kowalska, A new insight into in vitro behaviour of poly(ε-caprolactone)/bioactive glass composites in biologically related fluids. Journal of Materials Science, 2018. 53(6): p. 3939-3958.
57. Etsu Suzuki, D.F., Masao Takahashi, Shigeyoshi Oba, Hiroaki Nishimatsu, Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World Journal of Cardiology, 2015. 7(8): p. 454-465.
58. Naghmeh Naderi, E.J.C., Michelle Frances Griffin, Tina Sedaghati, Muhammad Arif Javed, Michael W. Findlay, Christopher Glenn Wallace, Afshin Mosahebi, Peter Em Butler, Alexander M. Seifalian, Iain Stuart Whitaker, The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. International Wound Journal, 2017. 14(1): p. 112-124.
59. Sunil Rangappa, C.F., Eng Hin Lee, Ariff Bongso, Eugene Kwang Wei Sim, Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Annals of Thoracic Surgery, 2003. 75(3): p. 775-779.
60. Bruce A Bunnell, M.F., Christine Ann Gagliardi, Bindiya R. Patel, Cynthia Baillif Ripoll, Adipose-derived stem cells: Isolation, expansion and differentiation. Methods, 2008. 45(2): p. 115-120.
61. Wee Kiat Ong, C.S.T., Kai Li Chan, Grace Gandi Goesantoso, Xin Hui Derryn Chan, Edmund Chan, Jocelyn Yin, Chia Rou Yeo, Chin Meng Khoo, Jimmy Bok Yan So, Asim Shabbir, Sue-Anne Ee Shiow Toh, Weiping Han, Shigeki Sugii, Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports, 2014. 2(2): p. 171-179.
62. D. Li, G.-M.L., Yi-Dan Liang, Zhi-Jie Liang, Min-Hong Huang, Qi-liu Peng, Dong-Hua Zou, Rong-He Gu, Fang-tian Xu, Hui Gao, Zhen-dong Chen, Guang-Yi Chi, Zhong-heng Wei, Li Chen, Hong-mian Li, CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration. Oncotarget, 2017. 8(29): p. 46875-46890.
63. Alexander Mildmay-White, W.S.K., Cell surface markers on adipose-derived stem cells: A systematic review. Current Stem Cell Research & Therapy, 2017. 12(6): p. 484-492.
64. Brian A. Mailey, A.H., Jennifer Bauk Baker, Adam Alexander Young, Zeni C Alfonso, Kevin C Hicok, Anne M Wallace, Steven R. Cohen, Adipose-derived stem cells: Methods for isolation and applications for clinical use. Methods in Molecular Biology, 2014. 1210: p. 161-181.
65. Umesh D. Wankhade, M.S., Ravindra Kolhe, Sadanand Fulzele, Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells International, 2016. 2016(5): p. 1-9.
66. Shyh-Jer Huang, R.-H.F., Woei-cherng Shyu, Shih-Ping Liu, Gwo-Ping Jong, Yung-Wei Chiu, Hsiao-Su Wu, Y. M. Tsou, Chao-Wen Cheng, Shinn-zong Lin, Adipose-derived stem cells: Isolation, characterization, and differentiation potential. Cell Transplantation, 2013. 22(4): p. 701-709.
67. Bradley Thomas Estes, B.O.D., Jeffrey M. Gimble, Farshid Guilak, Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 2010. 5(7): p. 1294-1311.
68. Vladimir Zachar, J.G.R., Trine Fink, Isolation and growth of adipose tissue-derived stem cells. Methods in Molecular Biology, 2011. 698: p. 37-49.
69. Andrea Dicker, K.L.B., Gaby Åström, Vanessa J A van Harmelen, Cecilia Götherström, L E Hakamies Blomqvist, Peter Arner, Mikael Rydén, Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Experimental Cell Research, 2005. 308(2): p. 283-290.
70. Sander Rensen, P.A.D., Guillaume J van Eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Netherlands Heart Journal: monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation, 2007. 15(3): p. 100-108.
71. Laura Vázquez Rodríguez, Z.C.A., Rong Zhang, Joanne Ho Yan Leung, Benjamin W Wu, Louis Joseph Ignarro, Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(32): p. 12167-12172.
72. Jennifer Anne de Villiers, N.N.H., Heidi Abrahamse, Adipose derived stem cells and smooth muscle cells: Implications for regenerative medicine. Stem Cell Reviews and Reports, 2009. 5(3): p. 256-265.
校內:立即公開