簡易檢索 / 詳目顯示

研究生: 何永坤
Ho, Wing-Kwan
論文名稱: 鐵板鈦礦鐵鈦氧-氧化鋅異質奈米樹枝狀陣列光陽極於光電化學水分解之應用
Pseudobrookite Fe2TiO5-ZnO Heterojunction Nanodendrite Array Photoanodes for Photoelectrochemical Water Splitting
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 氧化鋅鐵板鈦礦鐵鈦氧奈米異質結構光電化學水分解可見光光觸媒
外文關鍵詞: zinc oxide ZnO, pseudobrookite Fe2TiO5, nanostructured heterojunction, photoelectrochemical water splitting, visible-light photocatalysis
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用三步驟旋轉塗佈法於已成長奈米陣列的導電玻璃上沉積鐵鈦氧薄膜,合成鐵板鈦礦鐵鈦氧-氧化鋅奈米柱與奈米樹枝狀陣列光陽極。使掃用描式電子顯微鏡確認沉積鐵鈦氧的厚度為10 nm,並確認主幹與側枝被鐵鈦氧包覆。利用拉曼光譜儀與穿透式電子顯微鏡確認成功合成鐵板鈦礦鐵鈦氧-氧化鋅奈米柱與奈米樹枝狀陣列光陽極,並兩者間存在磊晶關係。鐵鈦氧-氧化鋅奈米樹枝狀陣列光陽極進行光電化學水分解測量,在1.23 V vs. RHE下光電流為1.04 mA/cm2。同時,經過30分鐘的穩定性測量依然保持80%的光電流。在光電轉換效率測量中,在410-550 nm間保持約7%,確認可利用可見光進利光電化學水分解。進一步以亞硫酸鈉作為電洞犧牲試劑,輔助光電化學水分解測量載子注入效率與載子分離效率。結果顯示,其載子注入效率與載子分離效率則分別為29.2%與60%。載子注入效率與載子分離效率的提升歸因於形成Type II異質結構與表面陷阱態降低。使用O2螢光探針測量法拉第效率為84.3 %。進一步沉積Co-Pi作為共觸媒,在1.23 V vs. RHE下光電流從1.04 mA/cm2上升至1.83 mA/cm2,與起始電壓從0.6 V下降到0.3 V。

    In this work, pseudobrookite(Fe2TiO5) layer has been deposited on zinc oxide(ZnO) nanorod(NR) and nanodendrite(ND) array photoanode was successfully prepared by three-step spin-coating. The results show that optimal ZnO/Fe2TiO5 ND array photoanode achieved the photocurrent density of 1.04 mA/cm2 at 1.23 V vs. RHE under illumination AM 1.5G(100 mW/cm2), 31 times and 2.2 times higher that pristine Fe2TiO5 and ZnO/Fe2TiO5 NR array photoanode, respectively. In addition, the photocurrent onset potential shifted by 0.4 V relative to the pristine Fe2TiO5. Furthermore, Na2SO3 was used as the hole scavenger to assist photoelectrochemical to measure the injection efficiency and separation efficiency, the results show that the injection efficiency and separation efficiency of ZnO/Fe2TiO5 ND array photoanode were 29.2% and 60%, respectively. Further to improve the PEC performance by introducing Co-Pi cocatalyst. The ZnO/Fe2TiO5 ND-Co-Pi array photoanode, the photocurrent densities attained at 1.23 V vs. RHE are 1.83 mA/cm2 and the onset potential shifted from 0.6 to 0.3 V.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1前言 1 1-2 Honda-Fujishima Effect 5 1-3 研究動機 7 第二章 文獻回顧 9 2-1 光觸媒原理 9 2-1-1 光觸媒產氫的基本機制 10 2-1-2 光觸媒水分解過程 12 2-2 光觸媒水分解系統 15 2-2-1 光催化反應系統 17 2-2-2 光電化學反應系統 17 2-3光電化學系統(PEC)水分解 19 2-3-1 光電化學系統工作原理 19 2-3-2 光觸媒電極 24 2-3-3 奈米結構對光電化學水分解的影響 25 2-3-4 異質結構對光電化學水分解的影響 28 2-4鐵板鈦礦鐵鈦氧的性質與應用 29 2-4-1 鐵板鈦礦鐵鈦氧的性質 29 2-4-2 鐵板鈦礦鐵鈦氧應用於太陽光水分解 31 第三章 實驗步驟與研究方法 34 3-1 實驗材料 34 3-1-1 製備氧化鋅奈米柱與樹枝狀陣列 34 3-1-2 製備鐵鈦氧-氧化鋅奈米柱與樹枝狀陣列 34 3-1-3 測量水分解電性 35 3-1-4 電沉與共觸媒 35 3-2 實驗流程圖 36 3-3 實驗步驟 37 3-3-1 基板清洗 37 3-3-2 浸鍍氧化鋅晶種層 37 3-3-3 製備氧化鋅奈米柱陣列 38 3-3-4 製備氧化鋅奈米樹枝狀陣列 38 3-3-5 旋轉塗佈鐵鈦氧薄膜 39 3-3-6 電沉積共觸媒 40 3-3-7 光電化學分解水電極製備與測量 40 3-3-8 電荷分離效率與注入效率之測量 41 3-3-9 光電轉換效率之測量 42 3-3-10 法拉第效率測量 42 3-4 分析儀器 44 3-4-1 掃描式電子顯微鏡(Scanning electron microscope) 44 3-4-2 穿透式電子顯微鏡(Transmission electron microscopy) 46 3-4-3 拉曼分析儀(Raman spectroscopy) 48 3-4-4 紫外光-可見光吸收譜儀(UV-Visible light Absorption Spectroscopy) 50 3-4-5 恆電位儀(Potentiostat) 50 第四章 結果與討論 51 4-1 氧化鋅奈米結構陣列光陽極 51 4-1-1 氧化鋅奈米結構陣列的表面型態 51 4-1-2 氧化鋅奈米結構陣列於光電化學水分解之特性 53 4-2 鐵板鈦礦鐵鈦氧-氧化鋅異質奈米結構陣列光陽極 56 4-2-1 鐵板鈦礦鐵鈦氧奈米薄膜之合成與表面形貌 56 4-2-2 沉積層數對於鐵板鈦礦鐵鈦氧-氧化鋅異質奈米結構陣列光吸收度之影響 60 4-2-3 鐵板鈦礦鐵鈦氧-氧化鋅異質奈米結構陣列之結構分析與鑑定 61 4-3 鐵板鈦礦鐵鈦氧-氧化鋅異質奈米結構陣列於光電化學水分解之應用 69 4-3-1 鐵板鈦礦鐵鈦氧光電極之光電化學水分解之特性 69 4-3-2 鐵板鈦礦鐵鈦氧-氧化鋅異質奈米結構陣列之光電化學水分解之特性 72 4-3-3 穩定性測試 76 4-3-4 鐵鈦氧沉積層數對光電化學水分解之影響 83 4-3-5電洞犧牲試劑輔助光電化學水分解測量 86 4-3-6 鐵板鈦礦鐵鈦氧-氧化鋅異質奈米結構陣列之暫態光電流測量 91 4-3-7 鐵板鈦礦鐵鈦氧-氧化鋅奈米樹枝狀陣列光陽極之法拉第效率測量 93 4-4 電沉積共觸媒之效應 95 第五章 結論 98 第六章 參考文獻 102

    1. Association, W., Heat Values of Various Fuels. 2018.
    2. Tachibana, Y., L. Vayssieres, and J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012. 6(8): p. 511-518.
    3. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
    4. Cai, L., et al., V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light. international journal of hydrogen energy, 2015. 40(3): p. 1394-1401.
    5. Hsu, Y.-K., Y.-C. Chen, and Y.-G. Lin, Novel ZnO/Fe2O3 core–shell nanowires for photoelectrochemical water splitting. ACS applied materials & interfaces, 2015. 7(25): p. 14157-14162.
    6. Zhou, J., et al., Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018. 226: p. 421-428.
    7. Chen, Y., et al., Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical Water splitting. Applied Catalysis B: Environmental, 2019. 259: p. 118079.
    8. Zhou, T., et al., Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2020. 269: p. 118776.
    9. Yang, J.-S., W.-P. Liao, and J.-J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS applied materials & interfaces, 2013. 5(15): p. 7425-7431.
    10. Xu, M., et al., Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano letters, 2012. 12(3): p. 1503-1508.
    11. Yang, J.-S. and J.-J. Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy, 2017. 32: p. 232-240.
    12. Su, J., et al., Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano letters, 2011. 11(5): p. 1928-1933.
    13. Zachäus, C., et al., Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis. Chemical science, 2017. 8(5): p. 3712-3719.
    14. Kim, J.H., et al., Awakening Solar Water‐Splitting Activity of ZnFe2O4 Nanorods by Hybrid Microwave Annealing. Advanced Energy Materials, 2015. 5(6): p. 1401933.
    15. Kim, J.H., et al., Defective ZnFe 2 O 4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale, 2015. 7(45): p. 19144-19151.
    16. Kim, J.H., et al., A multitude of modifications strategy of ZnFe 2 O 4 nanorod photoanodes for enhanced photoelectrochemical water splitting activity. Journal of Materials Chemistry A, 2018. 6(26): p. 12693-12700.
    17. Kuang, S., et al., Enhancement of Fe2TiO5 photoanode through surface Al3+ treatment and FeOOH modification. ACS Sustainable Chemistry & Engineering, 2019. 7(17): p. 14347-14352.
    18. Zhang, H., et al., Engineering highly ordered iron titanate nanotube array photoanodes for enhanced solar water splitting activity. Advanced Functional Materials, 2017. 27(35): p. 1702428.
    19. Lv, X., et al., Fe2TiO5-incorporated hematite with surface P-modification for high-efficiency solar water splitting. Nano Energy, 2017. 32: p. 526-532.
    20. Zhang, H., et al., Precisely-controlled, a few layers of iron titanate inverse opal structure for enhanced photoelectrochemical water splitting. Nano Energy, 2019. 62: p. 20-29.
    21. Lee, D.K., et al., Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews, 2019. 48(7): p. 2126-2157.
    22. An, X., et al., Light absorption modulation of novel Fe 2 TiO 5 inverse opals for photoelectrochemical water splitting. New Journal of Chemistry, 2017. 41(16): p. 7966-7971.
    23. Bassi, P.S., et al., Hydrothermal grown nanoporous iron based titanate, Fe2TiO5 for light driven water splitting. ACS applied materials & interfaces, 2014. 6(24): p. 22490-22495.
    24. Ginley, D. and M. Butler, The photoelectrolysis of water using iron titanate anodes. Journal of Applied Physics, 1977. 48(5): p. 2019-2021.
    25. Kozuka, H. and M. Kajimura, Sol-gel preparation and photoelectrochemical properties of Fe2TiO5 thin films. Journal of sol-gel science and technology, 2001. 22(1-2): p. 125-132.
    26. Li, C., et al., Enhanced Charge Separation through ALD‐Modified Fe2O3/Fe2TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation. Small, 2016. 12(25): p. 3415-3422.
    27. Liu, Y., et al., Metal or metal-containing nanoparticle@ MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 2019. 388: p. 63-78.
    28. Yan, Y., et al., Slightly hydrogenated TiO 2 with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2014. 2(32): p. 12708-12716.
    29. Jia, Y., et al., Z-scheme SnFe2O4-graphitic carbon nitride: Reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2020. 383: p. 123172.
    30. Ding, M., et al., Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019. 48(10): p. 2783-2828.
    31. Mu, Q., et al., Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Applied Catalysis B: Environmental, 2020. 262: p. 118144.
    32. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry letters, 2004. 33(12): p. 1534-1539.
    33. Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
    34. Maeda, K., Photocatalytic water splitting using semiconductor particles: history and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011. 12(4): p. 237-268.
    35. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p. 6446-6473.
    36. Maeda, K. and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
    37. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
    38. Wang, Y., et al., Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013. 5(18): p. 8326-8339.
    39. Wang, X., et al., All-solid-state Z-scheme Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous evolution of H2 and O2. Chemical Engineering Journal, 2020. 385: p. 123782.
    40. Tilley, S.D., et al., Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water‐splitting photocathodes. Advanced Functional Materials, 2014. 24(3): p. 303-311.
    41. Wang, Y., et al., Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Advanced Energy Materials, 2014. 4(16): p. 1400696.
    42. Badia-Bou, L., et al., Water oxidation at hematite photoelectrodes with an iridium-based catalyst. The Journal of Physical Chemistry C, 2013. 117(8): p. 3826-3833.
    43. Wang, G., et al., A mechanistic study into the catalytic effect of Ni (OH) 2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013. 5(10): p. 4129-4133.
    44. Wu, H., et al., Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020. 32(18): p. 1904717.
    45. Chen, X., et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Letters, 2016. 8(1): p. 1-12.
    46. Kong, D., et al., Recent advances in visible light-driven water oxidation and reduction in suspension systems. Materials Today, 2018. 21(8): p. 897-924.
    47. Hisatomi, T., J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014. 43(22): p. 7520-7535.
    48. Sivula, K., Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. The Journal of Physical Chemistry Letters, 2013. 4(10): p. 1624-1633.
    49. Nozik, A.J. and R. Memming, Physical chemistry of semiconductor− liquid interfaces. The Journal of Physical Chemistry, 1996. 100(31): p. 13061-13078.
    50. Wang, M., et al., Enhanced solar water-splitting activity of novel nanostructured Fe 2 TiO 5 photoanode by electrospray and surface F-modification. Nanoscale, 2018. 10(14): p. 6678-6683.
    51. Spurgeon, J.M., H.A. Atwater, and N.S. Lewis, A comparison between the behavior of nanorod array and planar Cd (Se, Te) photoelectrodes. The Journal of Physical Chemistry C, 2008. 112(15): p. 6186-6193.
    52. Jin, L. and C. Zhou, Electronic structures and optic properties of Fe2TiO5 using LSDA+ U approach. Progress in Natural Science: Materials International, 2013. 23(4): p. 413-419.
    53. Morosin, B., et al., The influence of crystal structure on the photoresponse of iron–titanium oxide electrodes. Journal of Applied Crystallography, 1978. 11(2): p. 121-124.
    54. Courtin, E., et al., New Fe 2 TiO 5-based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. Journal of Materials Chemistry A, 2014. 2(18): p. 6567-6577.
    55. Kment, S., et al., Photoanodes based on TiO 2 and α-Fe 2 O 3 for solar water splitting–superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017. 46(12): p. 3716-3769.
    56. Liu, Q., et al., Aligned Fe 2 TiO 5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nature communications, 2014. 5(1): p. 1-7.
    57. Bergholt, M.S., A. Serio, and M.B. Albro, Raman imaging: Guiding light for the extracellular matrix. Frontiers in bioengineering and biotechnology, 2019. 7: p. 303.
    58. Wu, C.-T., W.-P. Liao, and J.-J. Wu, Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells. Journal of Materials Chemistry, 2011. 21(9): p. 2871-2876.
    59. Sathasivam, S., et al., Highly Photocatalytically Active Iron (III) Titanium Oxide Thin films via Aerosol‐Assisted CVD. Chemical Vapor Deposition, 2015. 21(1-2-3): p. 21-25.
    60. Chen, K., et al., Enhanced photocurrent generation from indium–tin-oxide/Fe2TiO5 hybrid nanocone arrays. Nano Energy, 2020: p. 104965.
    61. Lupan, O., et al., Synthesis and characterization of Ag-or Sb-doped ZnO nanorods by a facile hydrothermal route. The Journal of Physical Chemistry C, 2010. 114(29): p. 12401-12408.
    62. Bhoi, Y.P., et al., Single step combustion synthesis of novel Fe2TiO5/α-Fe2O3/TiO2 ternary photocatalyst with combined double type-II cascade charge migration processes and efficient photocatalytic activity. Applied Surface Science, 2020: p. 146571.
    63. Wang, L., N.T. Nguyen, and P. Schmuki, A facile surface passivation of hematite photoanodes with iron titanate cocatalyst for enhanced water splitting. ChemSusChem, 2016. 9(16): p. 2048-2053.
    64. Ngo, H.D., et al., Structure and optical properties of sputter deposited pseudobrookite Fe 2 TiO 5 thin films. CrystEngComm, 2019. 21(1): p. 34-40.
    65. Bae, D., et al., Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017. 46(7): p. 1933-1954.
    66. Chen, S. and L.-W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chemistry of Materials, 2012. 24(18): p. 3659-3666.
    67. Pihosh, Y., et al., Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small, 2014. 10(18): p. 3692-3699.
    68. Pihosh, Y., et al., Photocatalytic generation of hydrogen by core-shell WO 3/BiVO 4 nanorods with ultimate water splitting efficiency. Scientific reports, 2015. 5: p. 11141.
    69. Deng, J., X. Lv, and J. Zhong, Photocharged Fe2TiO5/Fe2O3 photoanode for enhanced photoelectrochemical water oxidation. The Journal of Physical Chemistry C, 2018. 122(51): p. 29268-29273.
    70. Huang, Z.-F., et al., Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 2014. 6(23): p. 14044-14063.
    71. McDaniel, H., et al., Integration of type II nanorod heterostructures into photovoltaics. ACS nano, 2011. 5(9): p. 7677-7683.
    72. Wang, W., et al., Nonuniform effect of carrier separation efficiency and light absorption in type-ii perovskite nanowire solar cells. Nanoscale research letters, 2017. 12(1): p. 160.
    73. Perović, K., et al., Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials, 2020. 13(6): p. 1338.
    74. Gao, Y., et al., Fe2TiO5 as an efficient Co-catalyst to improve the photoelectrochemical water splitting performance of BiVO4. ACS applied materials & interfaces, 2018. 10(46): p. 39713-39722.
    75. Hagfeldt, A., et al., Photoelectrochemical studies of colloidal TiO2 films: the effect of oxygen studied by photocurrent transients. Journal of Electroanalytical Chemistry, 1995. 381(1-2): p. 39-46.

    無法下載圖示 校內:2025-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE