簡易檢索 / 詳目顯示

研究生: 陳品樺
Chen, Pin-Hua
論文名稱: 多樓層倉儲系統訂單撿貨問題之啟發式解法發展
Efficient Heuristics for Solving Order Picking Problem in a Multiple-Level Warehouse
指導教授: 李賢得
Lee, Shine-Der
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 62
中文關鍵詞: 多樓層倉儲系統啟發式演算法訂單撿貨
外文關鍵詞: multiple-level warehouse, efficient heuristics, order picking
相關次數: 點閱:111下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討多樓層物流倉儲系統中訂單撿貨問題,在人口稠密度高的地區,例如:台灣與歐洲因土地利用成本高昂,多樓層物流設施可以大幅節省土地成本,但多樓層倉儲系統之設計與作業均為新興問題,鮮少有學者提出相關研究;在實務上,多樓層設施必須仰賴垂直移動設備,其成本又遠較水平移動成本為高,多樓層設施之垂直搬運特性亦影響到物流系統整體成本與績效表現,而傳統的單樓層訂單撿貨模式與解法無法有效地解決此類設施實際訂單撿貨問題。本研究針對多樓層物流系統中訂單撿貨問題,考量垂直與水平移動成本之綜合效應,提出一套快速而品質佳之訂單撿貨問題解決方法,以最小化撿貨之相關成本。

    本文中多樓層物流倉儲設施佈置假設為已知或給定,各樓層儲架位置固定,在各物件儲位確定的前提下,撿貨員操控台車在系統內進行訂單撿貨,樓層之間透過垂直移動設備貫穿連結。本研究首先針對多樓層倉儲系統訂單撿貨問題建構數學規劃模式,目標函數包含不同樓層之間的垂直移動成本與同一樓層內的水平移動成本,受限於數學模式之困難度,本研究發展兩個有效率的啟發式演算法,以期求得多樓層倉儲系統訂單撿貨問題的最佳解或近似最佳解,第一種方法為最近撿貨品項演算法,利用選取最小成本撿貨點的方式進行訂單撿貨;第二種方法為走道內最小移動相關成本演算法,在撿完整層樓才可移動至另一樓層的規則下,走道內採取最短路徑法決定撿貨順序;實驗結果發現當撿貨數與倉儲系統樓層數少時,最近撿貨品項演算法有較好的求解品質,但當倉儲系統樓層數與撿貨數量增多時,走道內最小移動相關成本演算法因可反應此類型問題特性,而有較好的求解品質。

    We consider the order picking problem in a multiple-level warehouse, where a picker traverses through different levels and different aisles to pick an order with multiple items. In recent years, this multi-floor order picking system has become very popular in metropolitan areas where the cost to erect traditional single floor warehouse is prohibited, due to land restriction or other constraints.

    In this order picking system, the multiple-level warehouse layout is assumed known beforehand. Each floor includes multiple aisles with equal length and width. Items to be picked are stored with dedicated storage policy. Vertical transfer lifts are used to transport the picker from one floor to another. A picking tour is a specification of the sequence in which items in the specific order will be picked. For the specific order, the picker leaves the I/O point on the first floor, and traverses from one storage area to another between aisles and levels to pick the items, and finally returns to the I/O station.

    Due to the computational complexity, two efficient heuristics are developed in this thesis. The nearest item heuristic is a greedy procedure where the nearest item to the picker’s current position is selected. The minimum within-aisle picking cost procedure is a decomposition approach that finds the minimal within-aisle traversal cost one by one. Numerical experiments have shown that the first algorithm gives better solution quality when the number of items to be picked or the number of levels is small. When the number of items to be picked is large, the second algorithm gives better solution quality.

    摘要i Abstractii 致謝iii 目錄iv 圖目錄vi 表目錄vii 第一章 緒論1 1.1研究動機1 1.2研究目的2 1.3研究範圍2 1.4研究架構與流程3 1.5研究結果與發現3 第二章 文獻探討4 2.1儲位政策(Storage Policies)4 2.2倉儲佈置設計7 2.3訂單撿貨問題9 2.4旅行推銷員問題(Traveling Salesman Problem)12 第三章 多樓層訂單撿貨問題與數學模式15 3.1多樓層訂單撿貨問題描述15 3.2數學模式建構18 第四章 啟發式演算法22 4.1啟發式演算法發展 22 4.2演算範例說明26 4.3演算實驗與結果分析29 第五章 研究結果與未來研究方向38 5.1研究結果38 5.2未來研究方向39 參考文獻40 附錄一 演算例之LINGO程式45 附錄二 演算法C#程式碼46

    中文部分:

    郭獻隆(2003), “多樓層倉儲系統中專用儲位與垂直搬運設備之佈置設計”,國立成功大學工業管理研究所碩士論文。

    西文部份:

    Ashayeri, J., and Gelders, L.F. (1985), “Warehouse design optimization,” European Journal of Operational Research 21(3), 285-294.

    Ballou, H.R. (2004), Business Logistics Management 5th ed., Prentice Hall.

    Bazaraa, M.S., and Kirca, O. (1983), “A branch-and-bound-based heuristic for solving the quadratic assignment problem,” Naval Research Logistics Quarterly 30(3), 287-304.

    Bozer, Y.A., Meller, R.D., and Erlebacher S.J. (1994), “An improvement-type layout algorithm for single and multiple floor facilities,” Management Science 40(7), 918-932.

    Caron, F., Marchet, G., and Perego, A. (1998), “Routing policies and COI-based storage policies in picker-to-part system,” International Journal of Production Research 36(3), 713-732.

    Caron, F., Marchet, G., and Perego, A. (2000), “Layout design in manual picking system: a simulation approach,” Integrated Manufacturing System 11(2), 99-104.
    Chatterjee, S., Carrera, C., and Lynch, L.A. (1996), “Genetic algorithms and traveling salesman problems,” European Journal of Operational Research 93(3), 490-510.

    Christofides, N. (1975), Graph Theory: An Algorithm Approach, Academic Press, London.

    Crowder, H., and Padberg, M.W. (1980), “Solving large-Scale symmetric traveling salesman problem to optimality,” Management Science 26(5), 495-509.

    Davies, A.L., Gabbard, M.C., and Reinholdt, E.F. (1983), “Storage method saves space and labor in open-package-area picking operations,” Industrial Engineering 15(6), 68-74.

    Eynan, A., and Meir, J.R. (1994), “Establishing zones in single-command class-based rectangular AS/RS,” IIE Transactions 26(1), 38-45.

    Francis, R.L. (1967), “On some problems of rectangular warehouse design and layout,” Journal of Industrial Engineering 18(10), 595-604.

    Garey, M.R., and Johnson, D.S. (1979), Computers and Intractability: A guide to theory of NP-Completeness., W. H. Freeman

    Gibson, D.R., and Sharp, G.P. (1992), “Order batching procedures,” European Journal of Operation Research 58(1), 57-67.

    Goetschalckx, M., and Ratliff, H.D. (1988), “Order picking in an aisle,” IIE Transactions 20(1), 53-62.
    Hall, R.W. (1993), “Distance approximation for routing manual pickers in a warehouse,” IIE Transactions 25(4), 76-87.

    Hausman, W.H. Schwarz, L.B., and Graves, S.C. (1976), “Optimal storage assignment in automatic warehousing systems,” Management Science 22(6), 629-638.

    Heskett, J.L. (1963), “Cube-per-order index – a key to warehouse stock location,” Transportation and Distribution Management 3(4), 27-31

    Johnson, R.V. (1982), “SPACECRAFT for multi-floor layout planning,” Management Science 28(4), 407-417.

    Kaku, B.K., Thompson, G.L., and Baybars, I. (1988), “A heuristic method for the multi-story layout problem,” European Journal of Operational Research 37(3), 384-397.

    Kirkpartrick, S., Gelatt, C.D., Jr., and Vecchi, M.P. (1983), “Optimization by simulated annealing,” Science 220, 671-680.

    Larson, T.N., Heather, M., and Andrew, K. (1997), “A heuristic approach to warehouse layout with class-based storage,” IIE Transactions 29(4), 337-348.

    Lawler, E.L., Lenstra, J.K., Rinnooy, K.A.H.G., Shmoys, D.B. (1987), The Traveling Salesman problem – A Guided Tour of Combinatorial Optimization 2nd ed., John Wiley & Sons Ltd.

    Liggett, R.S., and Mitchell, W.J. (1981), “Optimal space planning in practice,” Computer Aided Design 13(5), 277-288.

    Linn, R.J., and Wysk, R.A. (1987), “An analysis of control strategies for automated storage and retrieval systems,” INFOR 25(1), 66-83.

    Malette, A.J., and Francis, R.L. (1972), “A generalized assignment approach to optimal facility layout,” IIE Transactions 4(2), 144-147.

    Meller, R.D., and Bozer, Y.A. (1996), “A new simulated annealing algorithm for the facility layout problem,” International Journal of Production Research 34(6), 1675-1692.

    Meller, R.D., and Bozer, Y.A. (1997), “Alternative approaches to solve the multi-floor facility layout problem,” Journal of Manufacturing Systems 16(3), 192-203.

    Miller, D.L., and Pekny, J.F. (1992), “Results from a parallel branch and bound algorithm for the asymmetric traveling salesman problem,” Mathematical Programming 55(2), 17-33.

    Ratliff, H.D., and Rosenthal, A.S. (1983), “Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem,” Operations Research 31(3), 507-521.

    Roodberg, K.D., and Koster R.D. (2001), “Routing method for warehouse with multiple aisles,” International Journal of Production Research 39(9), 1865-1883.
    Rouwenhorst, B., Reuter, B., Stockrahm, V., Houtum, G.J., Mantel, R.J., and Zijm, W.H.M. (2000), “Warehouse design and control: Framework and literature review,” European Journal of Operational Research 122(3), 515-533.

    Sahni, S., and Gonzalez, T. (1976), “NP-complete approximation problem,” Journal of Association for Computing Machinery 23(3), 555-565.

    Singh, K.N., and Oudheusden, D.L. (1997), “A branch and bound algorithm for the traveling purchaser problem,” European Journal of Operational Research 97(3), 571-579.

    Snyder, L.V., and Daskin, M.S. (2006), “A random-key genetic algorithm for the generalized traveling salesman problem,” European of Operational Research 174(1), 38-53.

    Vaughan, T.S., and Petersen, C.G. (1999), “The effect of warehouse cross aisles on order picking efficiency,” International Journal of Production Research 37(4), 881-897.

    Wilson, H.G. (1977), “Order quantity, product popularity, and the location of stock in a warehouse,” IIE Transactions 9(3), 230-237.

    Zhang, W., and Korf, R.E. (1996), “A study of complexity transitions on the asymmetric traveling salesman problem,” Artificial Intelligence 81, 223-239.

    Zhang, G. Q., Xue, J., Lai, K. K. (2002), “A class of genetic algorithm for multiple-level warehouse layout problem,” International Journal of Production Research 40(3), 731-744.

    下載圖示 校內:2018-09-10公開
    校外:2018-09-10公開
    QR CODE