| 研究生: |
林俊廷 Lin, Chun-Ting |
|---|---|
| 論文名稱: |
基於量子自旋霍爾拓樸波導饋入的槽孔天線共振頻率模擬分析 Resonant Frequency Analysis of Slot Antenna Fed by Quantum Spin Hall Photonic Topological Waveguides Using FDTD Method |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 拓樸絕緣體 、量子自旋霍爾效應 、光子晶體 、偽自旋 、槽孔天線 、FDTD |
| 外文關鍵詞: | Topological Waveguide, Slot Antenna, QSH Effect, Topological Edge State, Photonic Topological Insulator, Pseudospin, FDTD |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將槽孔天線與光子拓樸絕緣體整合,構築出一種拓樸波導饋入槽孔天線的結構,以利用拓樸邊緣態實現電磁波的單向傳輸並抑制背向散射。經由點波源與偽自旋激發,結果顯示當激發頻率超越邊緣態的交合點時,能量傳輸方向可逆轉,且背向散射顯著減弱。能帶結構分析則發現,加入槽孔天線後,平凡(trivial)與非平凡(non-trivial)晶格的能隙分別增大約 6.2 倍與 2.7 倍;在 a/R=3.0 下,原本應閉合之能帶仍保持分裂,導致拓樸相變無法完成,邊緣態因此消失,顯示目前所使用之槽孔天線因不具 C6 對稱而破壞了狄拉克錐的對稱性。儘管如此,只要在能隙內適當選擇激發頻率並放置天線於晶格適當位置,即可在無完全拓樸保護的情況下仍達到顯著的背向散射抑制。
This study integrates a slot antenna with a photonic topological insulator to form a topological waveguide fed slot-antenna structure, leveraging topological edge states for unidirectional electromagnetic wave transmission and back-scattering suppression. Excitation by both point-source and pseudospin inputs reveals that, when the excitation frequency exceeds the edge-state crossing point, the direction of energy flow at the slot reverses and back-scattering is significantly reduced. Band-structure analysis shows that embedding the slot antenna enlarges the bandgaps by approximately 6.2 times in trivial lattices and 2.7 times in non-trivial lattices; at a/R=3.0, bands that should close remain split, preventing the topological phase transition and causing the edge states to vanish and lose topological protection. Nevertheless, by selecting an excitation frequency within the bandgap and placing the antenna appropriately within the lattice, pronounced back-scattering suppression can still be achieved even without full topological protection.
[1] P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Communications Magazine, vol. 40, no. 1, pp. 140–147, 2002.
[2] L. Rakotondrainibe, Y. Kokar, G. Zaharia, G. Grunfelder, and G. El Zein,“Performance analysis of a 60 GHz near gigabit system for WPAN applications,” in 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, IEEE, 2010.
[3] Z. Genc, B. L. Dang, J. Wang, and I. Niemegeers, “Home networking at 60 GHz: Challenges and research issues,” Annals of Telecommunications – Annales des Télé-communications, vol. 63, pp. 501–509, 2008.
[4] D. Dash, H. E. Madi, G. Gopalakrishnan, et al., “WiGig and IEEE 802.11ad—for multi-gigabyte-per-second WPAN and WLAN,” arXiv preprint arXiv:1211.7356, 2012.
[5] J. Liu, A. Vosoogh, A. U. Zaman, and J. Yang, “Design and fabrication of a high-gain 60 GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide,”IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 2117–2122, 2017.
[6] S. Geng, “Performance and capacity analysis of 60 GHz WPAN channel,” Microwave and Optical Technology Letters, vol. 51, no. 11, pp. 2671–2675, 2009.
[7] S. Coudert, G. Duchateau, S. Dilhaire, and P. Lalanne, “Attenuation of slow Metal-Insulator-Metal plasmonic waveguides, from Joule absorption to roughness-induced backscattering,” arXiv preprint arXiv:1810.07389, 2018.
[8] H. Raza, J. Yang, P.-S. Kildal, and E. A. Alós, “Microstrip-Ridge Gap Waveguide—study of losses, bends, and transition to WR-15,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 1943–1952, 2014.
[9] F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in Photonic Crystals with broken Time–Reversal symmetry,” Physical Review Letters, vol. 100, no. 1, p. 013 904, 2008.
[10] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and M. Hafezi, “Two-dimensionally confined topological edge states in Photonic Crystals,” New Journal of Physics, vol. 18, no. 11, p. 113 013, 2016.
[11] L.-H. Wu and X. Hu, “Scheme for achieving a topological Photonic Crystal by using dielectric material,” Physical Review Letters, vol. 114, no. 22, p. 223 901, 2015.
[12] H. Yang, M. Herben, and P. F. Smulders, “Channel measurement and analysis for the 60 GHz radio in a reflective environment,” in Proc. WPMC, vol. 1, 2005.
[13] P. F. Smulders, “Statistical characterization of 60 GHz indoor radio channels,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 2820–2829, 2009.
[14] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter-Wave Wireless Communications. Pearson Education, 2015.
[15] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang,“Overview of millimeter-Wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017.
[16] S. Deng, M. K. Samimi, and T. S. Rappaport, “28 GHz and 73 GHz millimeter- wave indoor propagation measurements and path loss models,” in 2015 IEEE International Conference on Communication Workshop (ICCW), IEEE, 2015.
[17] Y. Al-Alem and A. A. Kishk, “High-gain 60 GHz slot antenna with symmetric radiation characteristics,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 2971–2982, 2019.
[18] D. Zarifi, A. Farahbakhsh, A. U. Zaman, and P.-S. Kildal, “Design and fabrication of a high-gain 60 GHz corrugated slot antenna array with ridge gap waveguide distribution layer,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2905–2913, 2016.
[19] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[20] S. John, “Strong localization of photons in certain disordered dielectric superlattices,”Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[21] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the Fine-Structure constant based on quantized Hall resistance,” Physical Review Letters, vol. 45, no. 6, p. 494, 1980.
[22] F. D. M. Haldane, “Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”,” Physical Review Letters, vol. 61, no. 18, p. 2015, 1988.
[23] C. L. Kane and E. J. Mele, “Quantum spin Hall effect in Graphene,” Physical Review Letters, vol. 95, no. 22, p. 226 801, 2005.
[24] S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” The Bell System Technical Journal, vol. 15, no. 1, pp. 92–112, 1936.
[25] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd. Hoboken, NJ: John Wiley & Sons, 2005.
[26] H. G. Booker, “Slot aerials and their relation to complementary wire aerials (Babinet’s principle),” Journal of the Institution of Electrical Engineers—Part IIIA: Radiolocation, vol. 93, no. 4, pp. 620–626, 1946.
[27] R. C. Hansen, Reference Data for Engineers, 9th. New York: McGraw-Hill, 2002.
[28] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill,1961.
[29] J. Bang and J. Choi, “A compact hemispherical beam-coverage phased array antenna unit for 5g mm-wave applications,” IEEE Access, vol. 8, pp. 139 715–139 726, 2020.
[30] I. A. Sukhoivanov and I. V. Guryev, Photonic crystals: physics and practical modeling. Springer, 2009, vol. 152.
[31] IU ScIU Blog. “Can you turn a baseball into a donut?” (Nov. 14, 2020), [Online]. Available: https://blogs.iu.edu/sciu/2020/11/14/can-you-turn-a-baseball-into-a-donut/ (visited on 08/01/2025).
[32] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential,” Physical Review Letters, vol. 49, no. 6, pp. 405–408, 1982.
[33] M. Kohmoto, “Topological invariant and the quantization of the Hall conductance,”Annals of Physics, vol. 160, no. 2, pp. 343–354, 1985.
[34] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, vol. 392, no. 1802, pp. 45–57, 1984.
[35] E. H. Hall, “On a new action of the magnet on electric currents,” American Journal of Mathematics, vol. 2, no. 3, pp. 287–292, 1879.
[36] K. von Klitzing, “The quantized Hall effect,” Reviews of Modern Physics, vol. 58, no. 3, p. 519, 1986.
[37] B. Liu and W. Zhang, “Research progress of topological quantum materials: From first-order to higher-order,” Symmetry, vol. 15, no. 9, p. 1651, 2023.
[38] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966.
[39] P. Jaysaval, D. V. Shantsev, and S. de la Kethulle de Ryhove, “Efficient 3-d controlled-source electromagnetic modelling using an exponential finite-difference method,”Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, vol. 203, no. 3, pp. 1541–1574, 2015.
[40] A. Taflove, S. C. Hagness, and M. Piket-May, “Computational electromagnetics: The finite-difference time-domain method,” The Electrical Engineering Handbook, vol. 3, no. 629-670, p. 15, 2005.
[41] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994.
[42] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,” Microwave and optical technology letters, vol. 27, no. 5, pp. 334–339, 2000.
[43] H. Assi and R. S. Cobbold, “Perfectly matched layer for second-order time-domain elastic wave equation: Formulation and stability,” arXiv preprint arXiv:1312.3722, 2013.
[44] P. E. Allain and J.-N. Fuchs, “Klein tunneling in graphene: Optics with massless electrons,” The European Physical Journal B, vol. 83, no. 3, p. 301, 2011.
校內:2027-08-31公開