簡易檢索 / 詳目顯示

研究生: 梁武智
Liang, Wuu-Jyh
論文名稱: 聚矽氧烷有機-無機混成型鋰離子高分子電解質之製備與特性研究
Studies on Preparation and Characterization of Lithium-ion Polymer Electrolytes Based on Polysiloxane Hybrid
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 80
中文關鍵詞: 有機-無機混成鋰離子高分子電解質聚矽氧烷
外文關鍵詞: organic-inorganic hybrid, lithium-ion polymer electrolytes, polysiloxane
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    In this dissertation, two categories of novel materials for polymer electrolytes based on polysiloxane hybrid were prepared, and their microstructures associated with ion conduction behavior were investigated. This monograph is divided into four parts as follows:
    1. A new hybrid polymer electrolyte system containing polysiloxane and polyether segments is designed and prepared via epoxide-crosslinking. The thermal behavior, structure, and ionic conductivity of the hybrid materials are investigated and characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), 13C solid-state NMR, and alternating current (AC) impedance measurements. Two glass transition temperatures have been observed, showing their dependence on the composition and LiClO4/PC content. The miscibility of the polymer components in the hybrid has been studied by examining the 1H spin-relaxation times in the laboratory frame (T1(H)) and in the rotating frame (T1r(H)) with various compositions. Multi-relaxation T1r(H) behavior has been observed, indicative of the presence of structural heterogeneity at the time scale of T1r(H). These results are correlated and used to interpret the phenomena of conductivity of lithium ion in the matrix of hybrid networks.
    2. Solid polymer electrolytes based on epoxide-crosslinked polysiloxane/polyether hybrid (SE55) were characterized by DSC, impedance measurements and 7Li MAS NMR spectra. The DSC results indicate that initially a cation complexation dominated by the crosslink site of SE55 is present, and subsequently the formation of transient cross-links between Li+ ions and the ether oxygens of polyether segment results in an increase in Tg of the polyether segment (Tg1). However, the Tg1 remains almost invariant at the highest salt concentration of O/Li+ = 4. A VTF-like temperature dependence of ionic conductivity is observed, implying that the diffusion of charge carrier is coupled with the segmental motions of the polymer chains, and furthermore, a maximum conductivity value is observed at O/Li+ = 20 in the analyzed temperature range. Significantly, the 7Li MAS NMR spectra provide high spectral resolution to demonstrate the presence of at least two distinct Li+ local environments in SE55-based electrolytes. Detailed analyses of DSC and 7Li MAS NMR spectra results are achieved and discussed in terms of ion-polymer and ion-ion interactions, and further correlated with ion transport behavior.
    3. Hybrid organic-inorganic materials derived from 3-glycidoxypropyltrimethoxyl- silane (GPTMS) were prepared via two different synthetic routes: (1) HCl-catalyzed sol-gel approach of silane followed by lithium perchlorate (LiClO4)/HCl catalyzed opening of epoxide; (2) simultaneous gelation of tin/LiClO4 catalyzed silane/epoxide groups. LiClO4 catalyzes the epoxide polymerization, and its effects on the structure of these hybrid materials were studied by solid-state 13C and 29Si CP/MAS NMR. The different synthetic routes have been found to significantly affect the polymerization behaviors of organic and inorganic sides in the presence of LiClO4. Larger amount of LiClO4 promotes the opening of epoxide and leads to the formation of longer PEO chains via HCl-catalyzed sol-gel approach, whereas in the case of tin-catalyzed, the faster polymerization of inorganic side hinders the growth of the organic network. The addition of LiClO4 was proved to be without crystalline salt present in the hybrid networks by wide-angle X-ray powder diffraction.
    4. A new class of hybrid ionic conductors with covalent bonds between the organic poly(ethylene oxide) chains and the siloxane phase were prepared based on poly(ethylene glycol) diglycidyl ether (PEGDE) and 3-glycidoxypropyltrisilane (GPTMS) in the presence of lithium perchlorate (LiClO4) which acted as both ionic source and the epoxide ring-opening catalyst. The effect of salt-doped level on the microstructure and ionic conductivity of these composite electrolytes were investigated by means of Fourier transform infra-red (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), a. c. impedance and multinuclear solid-state nuclear magnetic resonance (NMR) measurements. Specially, DSC results indicate the formation of transient cross-links between Li+ ions and the ether oxygens on complexation with LiClO4 results in an increase in polyether segment Tg. However, the polyether segment Tg decreases at the highest salt concentration (5.0 mmol LiClO4 /g PEGDE). This is ascribed to the plasticizing effect, and can be further confirmed by 13C, 1H and 7Li MAS NMR spectra. Moreover, the behavior of ion transport is coupled with the segmental motions of polymer chains and also correlated with the interactions between ions and polymer host.

    ABSTRACT.........................................i ACKNOWLEDGEMENT................................iii LIST OF TABLES..................................iv LIST OF SCHEMES..................................v LIST OF FIGURES.................................vi CHAPTER 1. INTRODUCTION..........................1 1-1 Performance of Lithium Ion-Conducting Polymers.........................................1 1-2 PEO-Based Electrolytes.......................5 1-3 Gelled Polymer Electrolytes..................7 1-4 New Generation Polymer Electrolyte...........7 1-5 Research Motivation..........................9 CHAPTER 2. THEOREMS.............................11 2-1 Dissociation of Inorganic Salts in Macromolecules..................................11 2-2 Ion Conduction Mechanisms in a Solvent-free Polymer Electrolyte.............................12 2-3 Alternating Current Measurements............14 2-4 NMR Spectroscopy of Solid Polymer Systems...17 CHAPTER 3. EXPERIMENTAL SECTION.................20 3-1 Materials...................................20 3-2 Sample Preparation..........................20 3-3 Characterizations...........................22 CHAPTER 4. RESULTS AND DISCUSSION...............24 4-1 Morphology and Ionic Conductivity Studies of Epoxide-crosslinked Polysiloxane/Polyether Networks........................................24 4-2 Study of DSC, Ionic Conductivity, and 7Li NMR Spectral Changes Associated with Cation Complexation in an Epoxide-crosslinked Polysiloxane/Polyether Electrolyte..............40 4-3 Microstructure of Organic-inorganic Hybrid Networks Composed of 3-Glycidoxypropyltrimethoxysilane and LiClO4 Affected by Different Synthetic Routes..........49 4-4 Effect of LiClO4-doped Level on the Microstructure and Ionic Conductivity of A Chemical-covalently Polyether-siloxane Hybrid Electrolyte.....................................58 CHAPTER 5. GENERAL CONCLUSIONS..................72 REFERENCES......................................74 VITA............................................78

    [1] Collongues R, Thery J, Boilot JP, In Hagenmuller P, van Gool W. Eds. Solid Electrolyte. Academic Press: New York, 1978.
    [2] Armand MB, Chabagno JM, Duclot M. Second International Meeting on Solid Electrolytes, St Andrews, Scotland, 1978. pp. 20-22.
    [3] Tarascon JM, Armand M. Nature 2001; 414: 359.
    [4] Scrosati B. J Electrochem Soc 1992; 139: 2776.
    [5] Nishikawa M, Ohno H, Kobayashi N, Tsuchida E, Hirohashi R. Nippon Shashin Gakkai-shi 1988; 51: 184.
    [6] Arbizzani C, Mastragostino M, Meneghello L, Hamaide T, Guyot A. Electrochim Acta 1992; 37: 1631.
    [7] Feullade G, Perche P. J Appl Electrochem 1975; 5: 63.
    [8] MacCallum JR, In Vincent CA. Eds. Polymer Electrolyte Reviews, Vols. 1 & 2. Elsevier: London, 1987/1989.
    [9] Gray FM. Solid Polymer Electrolytes-Functional and Technological Applications. VCH: New York, 1991.
    [10] Croce F, Brown SD, Greenbaum SG, Slane SM, Salomon M. Chem Mater 1993; 5: 1268.
    [11] Koksbang R, Olsen II, Shackle D. Solid State Ionics 1994; 69: 320.
    [12] Walker CW, Salomon M. J Electrochem Soc 1993; 140: 3409.
    [13] Gray FM. Polymer Electrolytes. The Royal Society of Chemistry: UK, 1997, Chapter 2.
    [14] Rochow EG. Silicon and Silicones. Springer-Verlag: Berlin, 1987.
    [15] Gutmann V. The Donor Acceptor Approach to Molecular Interactions. Plenum Press: New York, 1978.
    [16] Shotenshtein AI, Petrov ES, Yokovlevla EA. J Polym Sci C 1967; 16: 1799.
    [17] Pearson RG. J Am Chem Soc 1963; 85: 3533.
    [18] Pearson RG. Science 1966; 151: 172.
    [19] (a) Vogel H. Phys Z 1921; 22: 645. (b) Tamman G, Hesse W. Z Anorg Allg Chem 1926; 156: 245. (c) Fulcher GS. J Am Ceram Soc 1925; 8: 339.
    [20] Grahame DC. J Electrochem Soc 1952; 99: 3700.
    [21] Sluyters-Rehback M, Sluyters JH, In Bard AJ Eds. Electroanalytical Chemistry, Vol. 4. Marcel Dekker: New York, 1970.
    [22] Archer WI, Armstrong RD. Electrochemistry, Vol. 7. The Royal Society of Chemistry: London, 1980.
    [23] de Levie R. Electrochim Acta 1965; 10: 113.
    [24] Gerstein BC, Dybowski C. Transient Techniques in the NMR of Solids: An Introduction to Theory and Practice. Academic Press: New York, 1985.
    [25] Mehring M. High Resolution NMR in Solids. Springer-Verlag: Berlin, 1993.
    [26] Komoroski RA Eds. High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk. VCH Publishers: Deerfield Beach, FL, 1986.
    [27] Fyfe CA. Solid State NMR for Chemists. CFC Press: Guelph, ON, 1983.
    [28] Koenig JL. Spectroscopy of Polymers. American Chemistry Society: Washington, DC, 1992.
    [29] Hou SS, Chung YP, Chan CK, Kuo PL. Polymer 2000; 41: 3263.
    [30] North JM. European Patent No. EP 0279554 A2 1998.
    [31] Chintapalli S, Frech R. Solid State Ionics 1996; 86-88: 341.
    [32] Ochi M, Ozazaki M, Shimbo M. J Polym Sci, Polym Phys 1982; 20: 689.
    [33] Pogany GA. Polymer 1970; 1: 66.
    [34] Enns JB, Gillham JK. J Appl Polym Sci 1983; 28: 2567.
    [35] Kim DW, Kim YR, Park JK, Moon SI. Solid State Ionics 1998; 106: 329.
    [36] Stejskal EO, Schaefer J, Sefcik MD, McKay RA. Macromolecules 1981; 14: 275.
    [37] Dickinson LC, Yang H, Chu CW, Stein RS, Chien JC. Macromolecules 1987; 20: 1757.
    [38] Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. New York: Academic Press, 1994.
    [39] Yu T, Guo M. Prog Polym Sci 1990; 15: 825.
    [40] Lin CL, Kuo PL, Wu RR, Kao HM. Macromolecules 2002; 35: 3083.
    [41] van Heumen JD, Stevens JR. Macromolecules 1995; 28: 4268.
    [42] Linford RG. In Linford RG. Eds. Electrochemical Science and Technology of Polymers, Vol. 2. Elsevier Science: London, 1990, pp 281.
    [43] Ratner MA. In MacCallum JR, Vincent CA. Eds. Polymer Electrolyte Reviews I. Elsevier: London, 1987, pp 173.
    [44] Angell CA. Solid State Ionics 1983; 9/10: 3.
    [45] Angell CA. Solid State Ionics 1995; 18/19: 72.
    [46] Lonergan MC, Shriver DF, Ratner MA. Electrochim Acta 1998; 40: 204.
    [47] Mao G, Fernandez-Perea R, Howells WS, Price DL, Saboungi ML. Nature 2000; 405: 163.
    [48] Ferry A, Oradd G, Jacobson P. J Chem Phys 1998; 108: 7426.
    [49] Cohen MH, Turnbull D. J Chem Phys 1959; 31: 1164.
    [50] Bassindale AR, Taylor PG. In Patai S, Rappoport Z. Eds. The Chemistry of Organic Silicon Compounds Part 1. John Wiley & Sons: New York, 1989, Chapter 12.
    [51] Torell LM, Jacobson P, Petersen G. Polym Adv Technol 1993; 4: 152.
    [52] Manning J, Frech R, Huang E. Polymer 1990; 31: 2245.
    [53] Bernson A, Lindgren J. Polymer 1994; 35: 4842.
    [54] Sun HY, Sohn HJ, Yamamoto O, Takeda Y, Imanishi N. J Electrochem Soc 1999; 146: 1672.
    [55] Croce F, Appetecchi GB, Persi L, Scrosati B. Nature 1998; 394: 456.
    [56] MacFarlan DR, Newman PJ, Nairn KM, Forsyth M. Electrochim Acta 1998; 43: 1333.
    [57] Judeinstein P, Titman J, Stamm M, Schmidt H. Chem Mater 1994; 6: 127.
    [58] Dahmouche K, Atik M, Mello NC, Bonagamba JT, Panepucci H, Aegerter M, Judeinstein P. Mater Res Symp Proc 1996; 435: 363.
    [59] Nishio K, Okubo K, Watanabe Y, Tsuchiya T. J Sol-Gel Sci Technol 2000; 19: 187.
    [60] Fujinami T, Mehta A, Sugie K, Mori K. Electrochim Acta 2000; 45: 1181.
    [61] Schmidt H. J Non-Cryst Solids 1985; 73: 681.
    [62] Philipp G, Schmidt H. J Non-Cryst Solids 1986; 82: 31.
    [63] Schmidt H. J Non-Cryst Solids 1989; 112: 419.
    [64] Nass R, Arpac E, Glaubitt W, Schmidt H. J Non-Cryst Solids 1990; 121: 370.
    [65] Schmidt H. J Non-Cryst Solids 1994; 178: 302.
    [66] Surivet F, Lam TM, Pascault JP, Mai C. Macromolecules 1992; 25: 5742.
    [67] Hou SS, Kuo PL. Polymer 2001; 42: 9505.
    [68] Templin M, Wiesner U, Spiess HW. Adv Mater 1997; 9: 814.
    [69] O’Gara JF, Nazri G, MacArthur KM. Solid State Ionics 1991; 47: 87.
    [70] Ibemisi JA, Kimsinger JB. J Polym Sci Part A: Polym Chem 1980; 18: 1123.
    [71] Fedarko MC. J Magn Reson 1973; 12: 30.
    [72] Surivet F, Lam TM, Pascault JP, Pham QT. Macromolecules 1992; 25: 4309.
    [73] Shea KJ, Loy DA, Webster O. J Am Chem Soc 1992; 114: 6700.
    [74] Noto VD, Longo D, Münchow V. J Phys Chem B 1999; 103: 2636.
    [75] Noto VD, Bettinelli M, Furlani M, Lavina S, Vidali M. Macromol Chem Phys 1996; 197: 375.
    [76] Stolarzewicz A, Grobelny Z. Makromol Chem 1992; 193: 531.
    [77] Wu S, Peng X, Song Y, Zhou Z, Lin Y, Chen D, Wang F. Solid State Ionics 1995; 76: 163.
    [78] Dusek K. Epoxy Resins and Composites I, Springer-Verlag: New York, 1985.
    [79] Papke BL, Ratner MA, Shriver DF. J Phys Chem Solids 1981; 42: 493.
    [80] Eschmann J, Strasser J, Xu M, Okamoto Y, Eyring E, Petrucci S. J Phys Chem 1990; 94: 3908.
    [81] Kioul A, Mascia L. J Non-Cryst Solids 1994; 175: 169.
    [82] Cohen H. J Chem Soc 1952; 4282.
    [83] Yamanaka S, Sarubo M, Tadanobu K, Hattori M. Solid State Ionics 1992; 57: 271.
    [84] James DW, Mayes RE. Aust J Chem 1982; 35: 1775.
    [85] Symons MCR. Kevan L, Webster BC, Eds. Electron-Solvent and Ion-Solvent Interactions. Elsevier Science: New York, 1976, p. 311-341.
    [86] Salomon M, Xu M, Eyring EM, Petrucci S. J Phys Chem 1994; 98: 8234.
    [87] Petrucci S, Eyring EM. J Phys Chem 1991; 95: 1731 and the references therein.
    [88] Schantz S, Torell LM, Stevens JR. J Chem Phys 1991; 94: 6862.
    [89] Baney RH, Itoh M, Sakakibara A, Suzuki T. Chem Rev 1995; 95: 1409.
    [90] (a) Marcus Y. Ion Solvation. John Wiley: New York, 1985, pp 180-184. (b) Davies CW. Ion Association. Butterworths: Washington, 1962, pp 150-161.
    [91] Watanabe M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z. J Appl Phys 1985; 57: 123.

    下載圖示 校內:2004-09-26公開
    校外:2004-09-26公開
    QR CODE