| 研究生: |
游晟暉 You, Cheng-Hui |
|---|---|
| 論文名稱: |
多管板鰭管式熱交換器之熱傳特性的數值與實驗研究 Numerical and Experimental Study on Heat Transfer Characteristics of Multi-Tube Finned Tube Heat Exchangers |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 逆算法 、CFD模擬 、多管板鰭管式熱交換器 、混合對流 、自然對流 |
| 外文關鍵詞: | Inverse algorithm, Numerical simulation, Multi-tube finned tube heat exchanger, Heat transfer characteristics |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以三維CFD軟體配合逆算法及實驗溫度來求得多管板鰭式熱交換器於水平通道的熱流特性,探討入口風速、鰭片間距、鰭片擺放高度及加熱管距之影響。由於空氣流經板鰭管式熱交換器時會產生複雜三維流動,使得鰭片上的熱傳係數非均勻分布,故劃分數個子區域並設定其熱傳係數為常數,使用差分法搭配最小平方法,進行逆向求解,以取得逆算之鰭片熱傳參數,本文透過實驗量取鰭片表面之溫度,接著將量測數據代入逆算法求出鰭片表面熱傳係數及熱傳量,接著使用CFD軟體進行數值模擬選取最佳網格劃分及流動模式,最後將數值結果及熱傳現象變化之趨勢進行分析及討論。於本文自然對流案例中,吾人經測試驗證後選用Zero-Equation紊流模型作為流動模式選取;於混合對流下入口風速Va = 1m/s及Va = 3m/s之案例中,RNG k-ε紊流模式經比較結果及誤差後推論為本文選用之最適流動模式,而當入口風速增至Va = 5m/s時結果顯示標準k-ε紊流模式為結果更加精準之流動模式。在本研究參數範圍內,隨鰭片擺放高度下降,風速加快、鰭片間距增大及加熱管距增加皆會使熱傳係數提升,對應各參數變化之趨勢也會有所不同。
This study uses 3D CFD software with inverse algorithm to investigate the heat transfer characteristics of a multi-tube finned tube heat exchanger in a horizontal channel, and discusses the influence of air inlet speed, fin spacing, fin height and heating tube distance. Since air flowing through the heat exchanger will cause a complex three-dimensional flow, Therefore, divide several sub-regions on the fin and set the heat transfer coefficient as a constant. Use the difference method and the least square method to solve the problem in inverse to obtain the heat transfer coefficient of the fin, and then numerical simulation is performed with CFD software to select the best mesh division and The flow model, and finally the numerical results and the trend of heat transfer phenomena are analyzed and discussed. In the case of natural convection, after testing and verification, we choose the zero-equation turbulence model as the choice of flow mode. In the case of mixed convection with inlet velocity Va = 1m / s and Va = 3m / s, after comparing the results and errors, it is found that the RNGk-ε turbulence model is the most suitable flow mode selection. When the inlet air speed increases to Va = 5m/s, the results show that the standard k-ε turbulence model is a more accurate flow model. Finally, as the fin height decreases, the air speed increases, the distance between the fins increases, and the distance between the heating tubes increases, the heat transfer coefficient will increase, and the trends of the corresponding parameters will be different.
[1] R. Romero-Mendez, M. Sen, K.T. Yang and R. McClain, Effect of fin spacing on convection in a plate fin and tube exchanger, Int. J. Heat Mass Transfer, vol. 43, pp. 39-51, 2000.
[2] B. Şahin, A. Akkoca, N.A. Öztürk and Akilli, Investigation of flow characteristics in a plate fin and tube heat exchanger model composed of single cylinder, Int. J. Heat Fluid Flow, vol. 27, pp. 522-530, 2006.
[3] B. Şahin, N.A. Öztürk, C. Ozalp and C. Canpolat, PIV measurements of flow through normal triangular cylinder arrays in the passage of a model plate-tube heat exchanger, Int. J. Heat Fluid Flow, vol. 61, pp. 531-544, 2016.
[4] F.E.M. Saboya and E.M. Sparrow, Local and average transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96, pp. 265-272, 1974.
[5] E.C. Rosman, P. Carajilescov and F.E.M. Saboya, Performance of one-and two-row tube and plate fin heat exchanger, ASME J. Heat Transfer, vol. 106, pp. 627-632, 1984.
[6] C.H. Huang, I.C. Yuan and H. Ay, A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol. 46, pp. 3629-3638, 2003.
[7] C.H. Huang, I.C. Yuan and H. Ay, An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol. 52, pp. 4883-4893, 2009.
[8] H.T. Chen and W.L. Hsu, Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection, Int. J. Heat Mass Transfer, vol. 51, pp.1920-1932, 2008.
[9] H.T. Chen, J.C. Chou and H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, Int. J. Heat Mass Transfer, vol. 50, pp. 45-57, 2007.
[10] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol. 48, pp. 2697-2707, 2005
[11] S. Yildiz and H. Yuncu, An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer, Int. J.Heat Mass Transfer vol. 40, pp. 239-251, 2004
[12] N. Kayansayan, Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection, Exp. Therm. Fluid Sci. vol. 7, pp. 177-188, 1993
[13] R. Sajedi, M. Taghilou and M. Jafari, Experimental and numerical study on the optimal fin numbering in an external extended finned tube heat exchanger, Appl. Therm. Eng. vol. 83, pp. 139-146, 2015
[14] Y. Qiu, M. Tian and Z. Guo, Natural convection and radiation heat transfer of an externally-finned tube vertically placed in a chamber, Int. J. Heat Mass Transfer, vol. 49, pp. 405-412, 2013
[15] M. Yaghoubi and M. Mahdavi, An investigation of natural convection heat transfer from a horizontal cooled finned tube, Exp. Heat Transfer vol. 26, pp. 343-359, 2013
[16] C.W. Lu, J.M. Huang, W.C. Nien and C.C. Wang, A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger, Energy Conversion Management, vol. 52, pp. 1638-1643, 2011.
[17] M.S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47, pp. 1953-1964, 2004.
[18] A. Kumar, J.B. Joshi, A.K. Nayak and P.K. Vijayan, 3D CFD simulations of air cooled condenser-III: Thermal–hydraulic characteristics and design optimization under forced convection conditions, Int. J. Heat Mass Transfer, vol. 93, pp. 1227-1247, 2016.
[19] V. Glazar, A. Trp and K. Lenic, Numerical study of heat transfer and analysis of optimal fin pitch in a wavy fin-and-tube heat exchanger, Heat Transfer Eng., vol. 33(2), pp. 88-96, 2012.
[20] B. Watel, S. Harmand and B. Desmet, Influence of flow velocity and fin spacing on the forced convective heat transfer from an annular-finned tube, JSME Int. J., Ser. B, vol. 42, pp. 56-64, 1999.
[21] R.S. Matos, J.V.C. Vargas, T.A. Laursen and A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection”, Int. J. Heat Mass Transfer, vol. 47, pp.1347-1359, 2004
[22] M. Ashjaee and T.Yousefi, Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays, Heat Transfer Engineering, vol.28, pp. 460-471,2007.
[23] S. Narayan, A.K. Singh and A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders, Int. J. Heat Mass Transfer, vol.109 , pp. 278-292, 2017.
[24] H.T. Chen, Y.J. Chiu, C.S. Liu and J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, vol. 109, pp. 378-392, 2017
[25] H.T. Chen, H.Y. Chou, H.C. Tseng and J.R. Chang, Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data, Int. J. Heat Mass Transfer, Vol. 127, pp. 483-496, 2018.
[26] M.N. Özişik and H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York, 2000
[27] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp. 53-62, 1993.
[28] Q. Chen and W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol. 28, pp. 137-144, 1998.
[29] B.E. Launder and D.B. Spalding, “Mathematical Method of Turbulence”, Academic, London pp. 3-51, 1972
[30] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics Eng., vol. 3, pp. 269-289, 1974.
[31] V. Yakhot and S.A. Orszag, “Renormalization group analysis of turbulence”, Journal of Scientific Computing, vol.1, pp. 3-51, 1986
[32] T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, A new k-ε eddy viscosity model for high reynolds number turbulent flows - Model Development and Validation, Computers Fluids, vol. 24(3), pp. 227-238, 1995.
[33] M. Yaghoubi, M. Ashjaee, A.H. Eshtiaghi and T. Yousef, Thermal study of an array of inline horizontal cylinders below a nearly adiabatic ceiling, Int. J. Heat Mass Transfer, Vol. 33, pp. 232-239, 2009
[34] 林珮瑜,管位置對並列式板鰭管熱交換器之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2018。
[35] 馬唯瑄,管間距對板鰭管熱交換器之熱傳特性的數值與實驗研究,國立成功大學機械工程學系,碩士論文,2019。
[36] 陳品君,具各種圓管排列之板鰭管式熱交換器的熱傳特性研究,國立成功大學機械工程學系,碩士論文,2015。
[37] 張耀倫,H型單管板鰭管式熱交換器的混合對流熱流特性之研究,國立成功大學機械工程學系,碩士論文,2018。
[38] 周心宇,具溝槽之板鰭管式熱交換器的混合對流熱傳研究,國立成功大學機械工程學系,碩士論文,2019。
[39] 謝易倫,穿孔環狀鰭管式熱交換器之混合對流熱傳的實驗及數值研究,國立成功大學機械工程學系,碩士論文,2019。
[40] 邱毓絜,環狀鰭管式熱交換器之熱傳特性的數值與實驗研究,國立成功大學機械工程學系,碩士論文,2016。
校內:2025-06-30公開