| 研究生: |
何佳恩 Ho, Chia-En |
|---|---|
| 論文名稱: |
太陽能史特靈熱機與熱電裝置之性能最佳化分析 Performance analysis and optimization of solar energy Stirling engine with thermal electrical device |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 有限時間熱力學 、基因演算法 、史特靈熱機 、熱電裝置 |
| 外文關鍵詞: | finite time thermodynamics, Genetic Algorithms, Stirling heat engine, thermoelectric device |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限時間熱力學觀點,研究史特靈引擎與熱電裝置聯合系統之性能最佳化分析。考慮太陽能集熱器與史特靈引擎、史特靈引擎與熱電裝置之間的不可逆性熱傳,假設熱傳為牛頓熱傳定律,推導出熱機功率作為目標函式,以集熱器集熱溫度、熱機熱效率作為最佳化參數,使用基因演算法求出系統最大輸出功率,得到系統最佳設計參數,並模擬熱機冷端壁面緊貼熱電裝置,得知熱電裝置不影響熱機排熱溫度。
以熱機排熱溫度作為熱電裝置高溫熱儲溫度,透過熱電裝置利用熱機排熱端溫度與環境溫度之間溫差作功率輸出,改變熱電裝置內半導體個數,求出熱電裝置輸出最大功率時所對應之最佳電流值以及最佳半導體數目,由於輸出電流為短路電流的二分之一倍時,熱電裝置有最大輸出功率,因此可藉由調整外部負載電阻使熱電裝置有最大的輸出功率。
本文為設計者提供太陽能史特靈熱機與熱電裝置輸出最大功率最佳化設計之參考。
Based on finite time thermodynamics, this paper studies the performance optimization of the hybrid system which combined Stirling engine with thermoelectric devices. The heat transference in the heat exchangers between the solar collector and Stirling engines is considered in associated with the irreversibility of Stirling engines and thermoelectric device. The heat transfer law is assumed by Newton's law. Thus, the power of Stirling engine is derived as optimized objective function, and the optimized parameters are the temperature of the solar collector and the thermal efficiency of Stirling heat engine. The maximum power corresponding to optimized parameters is determined using Genetic Algorithm. It also reveals that the thermoelectric devices do not affect the emitted temperature of the Stirling heat engine with the thermoelectric devices close to the cold side wall of heat engines.
The emitted temperature of Stirling heat engine is as the high-temperature of heat reservoir. We have found the maximum power of the thermoelectric devices according to the number of semiconductor and obtained the optimized parameters of the device.
Finally, the maximum power for Stirling engine and the thermoelectric device are the power output of both system and find the total system efficiency and the corresponding physical parameters. The results are of importance to provide good guideline for design a hybrid system of Stirling heat engine and thermoelectric device.
[1] Novikov, I. I., 1958, "The efficiency of atomic power stations (a review)," Journal of Nuclear Energy (1954), 7(1-2), pp. 125-128.
[2] Curzon, F. L., and Ahlborn, B., 1975, "Efficiency of a Carnot engine at maximum power output," American Journal of Physics, 43(1), pp. 22-24.
[3] Ondrechen, M. J., Rubin, M. H., and Band, Y. B., 1983, "The generalized Carnot cycle - A working fluid operating in finite time between finite heat source and sinks," Journal of Chemical Physics, 78(7), pp. 4721-4727.
[4] De Vos, A., 1985, "Efficiency of some heat engines at maximum power conditions," American Journal of Physics, 53(6), pp. 570-573.
[5] Angulo Brown, F., 1991, "An ecological optimization criterion for finite time heat engines," Journal of Applied Physics, 69(11), pp. 7465-7469.
[6] Gordon, J. M., 1991, "Generalized power versus efficiency characteristics of heat engines the thermoelectric generator as an instructive illustration," American Journal of Physics, 59(6), pp. 551-555.
[7] Ibrahim, O. M., Klein, S. A., and Mitchell, J. W., 1991, "Optimum heat power cycles for specified boundary conditions," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 113(4), pp. 514-521.
[8] Klein, S. A., 1991, "An explanation for observed compression ratios in Internal combustion engines," Journal of Engineering for Gas Turbines and Power, 113(4), pp. 511-513.
[9] Wu, C., and Kiang, R. L., 1991, "Power performance of a nonisentropic Brayton cycle," Journal of Engineering for Gas Turbines and Power, 113(4), pp. 501-504.
[10] Chen, J. C., and Yan, Z. J., 1993, "Optimal performance of endoreversib- le cycles for another linear heat transfer law," Journal of Physics D-Applied Physics, 26(10), pp. 1581-1586.
[11] Ait Ali, M., 1995, "Maximum power and thermal efficiency of an irrever- sible power cycle," Journal of Applied Physics, 78(7), pp. 4313-4318.
[12] Angulo Brown, F., Rocha Martinez, J. A., and Navarrete Gonzalez, T. D., 1996, "A non-endoreversible Otto cycle model: Improving power output and efficiency," Journal of Physics D-Applied Physics, 29(1), pp. 80-83.
[13] Chen, J., 1996, "Thermodynamic analysis of a solar driven thermoele-
ctric generator," Journal of Applied Physics, 79(5), pp. 2717-2721.
[14] Wu, C., 1996, "Analysis of waste-heat thermoelectric power generators," Applied Thermal Engineering, 16(1), pp. 63-69.
[15] Chen, L. G., Lin, J. X., Sun, F. R., and Wu, C. I., 1998, "Efficiency of an Atkinson engine at maximum power density," Energy Conversion and Management, 39(3-4), pp. 337-341.
[16] Chen, L. G., Wu, C., Sun, F. R., and Cao, S., 1998, "Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle," Energy Conversion and Management, 39(7), pp. 643-648.
[17] Chen, L. G., Sun, F. R., and Wu, C., 1999, "Effect of heat transfer law on the performance of a generalized irreversible Carnot engine," Journal of Physics D-Applied Physics, 32(2), pp. 99-105.
[18] Lin, J. X., Chen, L. G., Wu, C., and Sun, F. R., 1999, "Finite time thermodynamic performance of a Dual cycle," International Journal of Energy Research, 23(9), pp. 765-772.
[19] Chen, L., Gong, J., Sun, F., and Wu, C., 2002, "Effect of heat transfer on the performance of thermoelectric generators," International Journal of Thermal Sciences, 41(1), pp. 95-99.
[20] Hou, S. S., 2004, "Heat transfer effects on the performance of an air standard Dual cycle," Energy Conversion and Management, 45(18-19), pp. 3003-3015.
[21] Chen, L., Li, J., Sun, F., and Wu, C., 2005, "Performance optimization of a two stage semiconductor thermoelectric generator," Applied Energy, 82(4), pp. 300-312.
[22] Zhou, S., Chen, L., Sun, F., and Wu, C., 2005, "Optimal performance of a generalized irreversible Carnot engine," Applied Energy, 81(4), pp. 376-387.
[23] Hou, S.S., 2007, "Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations," Energy Conversion and Management, 48(5), pp. 1683-1690.
[24] Lu, J., Ding, J., and Yang, J., 2009, "Optimal performance for solar thermal power system," Energy and Power Engineering, 1, pp. 110-115.
[25] Bejan, A., 1997, "Advanced engineering thermodynamics," Wiley- interscience.
[26] 陈林根, "不可逆過程和循環的有限時間熱力學分析," 高等教育出版社,2005
[27] 吴峯, 陈林根, 孙丰瑞, 喻九阳, "斯特林的有限時間熱力學優化," 化學工業出版社,2008
[28] 鄭慶陽, "有限時間熱力學在熱力循環上之應用," 國立成功大學機械工程研究所博士論文,1996
[29] 葉蔚青, "有限時間史特靈引擎之最大功率分析," 國立成功大學機械工程研究所碩士論文,2010
[30] 周鵬程, "遺傳演算法原理與應用-活用Matlab," 全華圖書,2007
[31] 賴鵬程, "太陽能系統分析與設計," 全華圖書,1982