| 研究生: |
陳昭名 Chen, Zhao-Ming |
|---|---|
| 論文名稱: |
發展以微液滴系統進行藻類油量檢測之技術 Development of lipid quantification technique for microalgae using microfluidic droplet systems |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 微液滴系統 、T型微流道 、界面活性劑 、Nile red 、小球藻 |
| 外文關鍵詞: | Digital microfluidics, T-junction, Surfactant, Nile red, Chlorella vulgaris |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微液滴系統(Digital microfluidics)因為具有快速分析、高產率、獨立環境控制等優點,在化學、生物等領域正快速發展中。由於微液滴的生成受到許多參數影響,例如流量、界面活性劑、流道形狀等,因此在本實驗中,首先利用微量幫浦(syringe pump)來控制通入T型微流道中大豆油與水的流量,產生高均勻性的微小液滴,並探討流量與界面活性劑對於微液滴生成及大小的影響。由實驗結果發現,當基材的平整度較高或是有添加界面活性劑時可以穩定液滴的生成;另外,在流量的影響上,改變大豆油與水的流量使Capillary number在2.47×10-3 與4.4×10-1之間時,可產生長度(橢圓形長軸)約在225 ~ 107 μm之間的微液滴,液滴與各參數間呈現L/W_c =1.258φ^0.159 Ca^(-0.081)*的無因次關係式。在相同的油及水流量下,加入界面活性劑會使液滴生成更穩定且產生更小顆的液滴。在應用上,通入被Nile red染色的藻類並觀察其被包覆在液滴中之情形;另外,也嘗試在彎曲流道中進行Nile red的即時混合與萃取之研究。本研究提供詳細資訊以利於建立可即時偵測藻油量的微流體平台。
*L:液滴長度;wc:液滴生成處的流道寬度;φ=Q_d/Q_c ,Qd:分散相流量,Qc:連續相流量;Ca= (μ_c v_c)/γ,γ:兩相間的界面張力、μc:連續相的黏度、vc:連續相的速度。
Digital microfluidics has been widely applied for biological and chemical research because of its abilities in rapid analysis, high throughput, and independent droplet manipulation. Many parameters affect the formation of droplets such as flow rates, surfactant concentrations, and geometries of microchannels. Manipulating and generating droplets with accuracy are important in obtaining meaningful results. In this study, soybean oil and water (with Tween 20 added in some sets of experiments) were used as continuous and disperse phases, respectively, to create highly monodispersed droplets in a T-junction microchannel. We found that droplets can be generated stably using smooth substrates or adding Tween 20. We have generated monodispersed droplets whose sizes were between 225 (μm) ~107 (μm) when the Capillary number was adjusted from 2.47×10-3 to 4.4×10-1. Adding surfactant decreased the length of droplets under the same flow rates. Furthermore, we obtained a simple relationship between the droplet lengths and the channel width, fluid viscosity and flow rates: L/W_c =1.258φ^0.159 Ca^(-0.081).*
Following this fundamental research, we used an aquareous solution containing microalgae (Chlorella vulgaris) that have been stained by Nile red as the disperse phase to generate microalgae-containing droplets. We successfully encapsulated various amounts of Nile red labeled microalgae in the droplets. Afterwards, we encapsulated Nile red into droplets to investigate the mixing and extraction of Nile red in a serpentine microchannel. Using this system, future integration of real-time labeling and detection for biological samples can be achieved.
*L: length of droplets; wc: width of channel where the droplet formed; Q= Q_d/Q_c ,Qd: flow rate of disperse phase, Qc: flow rate of continuous phase; Ca= (μ_c v_c)/γ, γ: interfacial tension between continuous and disperse phase, μc: viscosity of continuous phase, vc: velocity of continuous phase.
1. 謝誌鴻 and 吳文騰, 微藻培養與微藻油脂生產之研究. 國立成功大學化學工程學系博士論文, 2009: p. 1-160.
2. Chisti, Y., Biodiesel from microalgae. Biotechnology Advances, 2007. 25(3): p. 294-306.
3. Widjaja, A., C.-C. Chien, and Y.-H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(1): p. 13-20.
4. 葉俊良 and 吳文騰, 在光生化反應器中以二階段策略培養微藻生產油脂之研究. 國立成功大學化學工程學系碩士論文, 2006: p. 1-91.
5. Teh, S.-Y., R. Lin, L.-H. Hung, and A.P. Lee, Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
6. Song, H., D.L. Chen, and R.F. Ismagilov, Reactions in Droplets in Microfluidic Channels. Angewandte Chemie International Edition, 2006. 45(44): p. 7336-7356.
7. Huebner, A., S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, and A.J. deMello, Microdroplets: A sea of applications? Lab on a Chip, 2008. 8(8): p. 1244-1254.
8. Arora, A., G. Simone, G.B. Salieb-Beugelaar, J.T. Kim, and A. Manz, Latest Developments in Micro Total Analysis Systems. Analytical Chemistry, 2010. 82(12): p. 4830-4847.
9. Salieb-Beugelaar, G.B., G. Simone, A. Arora, A. Philippi, and A. Manz, Latest Developments in Microfluidic Cell Biology and Analysis Systems. Analytical Chemistry, 2010. 82(12): p. 4848-4864.
10. Yeh, K.-L., J.-S. Chang, and W.-m. chen, Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences, 2010. 10(3): p. 201-208.
11. Illman, A.M., A.H. Scragg, and S.W. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 2000. 27: p. 631-635.
12. Greenspan, P., E.P. Mayer, and S.D. Fowler, Nile Red: A Selective Fluorescent Stain for Intracellular Lipid Droplets. THE JOURNAL OF CELL BIOLOGY, 1985. 100: p. 965-973.
13. Fowler, S.D. and P. Greenspan, Application of Nile Red, a Fluorescent Hydrophobic Probe, for the Detection of Neutral Lipid Deposits in Tissue Sections: Comparison with Oil Red O. The Journal of Histochemistry and Cytochemistry, 1985. 33(8): p. 833-836.
14. Diaz, G., M. Melis, B. Batetta, F. Angius, and A.M. Falchi, Hydrophobic characterization of intracellular lipids in situ by Nile Red red/yellow emission ratio. Micron, 2008. 39(7): p. 819-824.
15. Chen, W., C. Zhang, L. Song, M. Sommerfeld, and Q. Hu, A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009. 77(1): p. 41-47.
16. Huang, G.-H., G. Chen, and F. Chen, Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass and Bioenergy, 2009. 33(10): p. 1386-1392.
17. Briscoe, B.J., C.J. Lawrence, and W.G.P. Mietus, A review of immiscible fluid mixing. Advances in Colloid and Interface Science, 1999. 81: p. 1-17.
18. Thorsen, T., R.W. Roberts, F.H. Arnold, and S.R. Quake, Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review Letters, 2001. 86(18): p. 4163-4166.
19. Nisisako, T., T. Torii, and T. Higuchi, Droplet formation in a microchannel network. Lab on a Chip, 2002. 2(1): p. 24-26.
20. Christopher, G.F. and S.L. Anna, Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007. 40(19): p. R319-R336.
21. Christopher, G.F., N.N. Noharuddin, J.A. Taylor, and S.L. Anna, Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 2008. 78(3): p. 036317~1-036317~12.
22. Gupta, A., S.M.S. Murshed, and R. Kumar, Droplet formation and stability of flows in a microfluidic T-junction. Applied Physics Letters, 2009. 94(16): p. 164107~1-164107~3.
23. Zagnoni, M., J.R. Anderson, and J.M. Cooper, Hysteresis in Multiphase Microfluidics at a T-Junction. Langmuir, 2010.
24. Liu, H. and Y. Zhang, Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics, 2009. 106(3): p. 034906~1-034906~8.
25. Gupta, A. and R. Kumar, Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect. Physics of Fluids, 2010. 22(12): p. 122001~1-122001~12.
26. Xu, J.H., G.S. Luo, S.W. Li, and G.G. Chen, Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 2006. 6(1): p. 131-136.
27. Gupta, A. and R. Kumar, Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluidics and Nanofluidics, 2009. 8(6): p. 799-812.
28. Abate, A., A. Poitzsch, Y. Hwang, J. Lee, J. Czerwinska, and D. Weitz, Impact of inlet channel geometry on microfluidic drop formation. Physical Review E, 2009. 80(2).
29. Tice, J.D., H. Song, A.D. Lyon, and R.F. Ismagilov, Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir, 2003. 19(22): p. 9127-9133.
30. Muradoglu, M. and H.A. Stone, Mixing in a drop moving through a serpentine channel: A computational study. Physics of Fluids, 2005. 17(7): p. 073305~1-073305~9.
31. Bringer, M.R., C.J. Gerdts, H. Song, J.D. Tice, and R.F. Ismagilov, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004. 362(1818): p. 1087-1104.
32. Tokeshi, M., T. Minagawa, and T. Kitamori, Integration of a Microextraction System on a Glass Chip: Ion-Pair Solvent Extraction of Fe(II) with 4,7-Diphenyl-1,10-phenanthrolinedisulfonic Acid and Tri-n-octylmethylammonium Chloride. Analytical Chemistry, 2000. 72(7): p. 1711-1714.
33. Chen, H., Q. Fang, X.-F. Yin, and Z.-L. Fang, Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab on a Chip, 2005. 5(7): p. 719-725.
34. Kumemura, M. and T. Korenaga, Quantitative extraction using flowing nano-liter droplet in microfluidic system. Analytica Chimica Acta, 2006. 558(1-2): p. 75-79.
35. Duffy, D.C., J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry, 1998. 70(23): p. 4974-4984.
36. McDonald, J.C., D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, and G.M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000. 21: p. 27-40.
37. Hungerford, G. and J.A. Ferreira, The effect of the nature of retained solvent on the fluorescence of Nile Red incorporated in sol–gel-derived matrices. Journal of Luminescence, 2001. 93: p. 155-165.
38. De Menech, M., P. Garstecki, F. Jousse, and H.A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008. 595: p. 141-161.
39. Garstecki, P., M.J. Fuerstman, H.A. Stone, and G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006. 6(3): p. 437-446.
40. Xu, J.H., S.W. Li, J. Tan, and G.S. Luo, Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics and Nanofluidics, 2008. 5(6): p. 711-717.
41. Tan, Y.-C., V. Cristini, and A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors and Actuators B: Chemical, 2006. 114(1): p. 350-356.
42. Stone, Z.B. and H.A. Stone, Imaging and quantifying mixing in a model droplet micromixer. Physics of Fluids, 2005. 17(6): p. 063103~1-063103~11.
43. van Steijn, V., C.R. Kleijn, and M.T. Kreutzer, Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab on a Chip, 2010. 10(19): p. 2513-2518.
校內:2016-08-05公開