簡易檢索 / 詳目顯示

研究生: 蔡德明
Tsai, Der-Min
論文名稱: 應用Models-3/CMAQ以PC cluster研究高速公路網與電廠對南高屏地區臭氧濃度之影響
Using Models-3/CMAQ setup in PC cluster to study the effects of highway networks and power plants on the ambient ozone concentrations
指導教授: 吳義林
Wu, Yee-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 223
中文關鍵詞: 電廠排放PC cluster臭氧空氣品質模式CMAQ高速公路網Models3
外文關鍵詞: highway networks, power plant, CMAQ, Models3, air quality model, PC cluster, ozone
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用四部主機共八顆CPU配合Gigabit乙太網路媒體建置PC Cluster硬體平台,該硬體平台安裝Red Hat Linux 9作業系統,搭配高儲存容量之磁碟陣列,並安裝適用於平行化運算之MPI函式庫MPICH,以進行Models-3/CMAQ空氣品質模式之模擬工作。在純系統效能之測試上,本系統最快可獲得13.3Gflops的浮點運算效能,且實際模擬網格大小為三公里,網格數量為70x100,垂直分層為15層,模擬期程為192個小時,模擬機制使用CB-IV時,所需要的實際系統操作時間僅需5小時以內即可處理完畢。若以本系統用於處理隔天亦即一天的空氣品質預報作業時,整體的一貫流程應可於70分鐘內完成,故本硬體平台應可滿足目前台灣地區空氣品質模式所需要的高速運算能力。

      本研究使用台灣地區已廣泛使用之排放量資料庫系統TEDS 5.1作為基礎排放量,配合各污染源之成長係數的推算後推估得2002/12及2003/10高臭氧濃度事件日期間的排放量,然而由2003/10月份之案例模擬中發現,線源排放量在高雄縣市交界處的一般平面道路NOx排放應有高估的情況。在假設空氣品質模式理論與程式設計均為正確的前提下,本研究透過給予整個排放源單一物種的校正因子以訂正TEDS資料庫,最終發現面源與線源之揮發性有機物分別給予校正因子為3與4時,可得模式模擬的最佳結果。利用處理完畢之排放量進行Models-3/CMAQ之模擬,發現臭氧尖峰非配對誤差大部分均小於20%的可接受範圍,且臭氧濃度大於60ppb之配對誤差均小於模式規範要求的30%誤差內,顯示出本模式已可有效的模擬出南高屏地區的臭氧濃度。

      若以此模式分析南高屏地區電廠排放對週界臭氧濃度的衝擊效應時,發現電廠高煙囪排放對南高屏地區在東北季風盛行的情況下,若南高屏地區產生窩流效應時,則整個南高屏地區的臭氧濃度將明顯的具有2-5ppb的臭氧增量,若無窩流效應時,則臭氧增量將發生於台灣西南方海面上,並不會影響到台灣陸地。同時,若以三維繪圖軟體vis5d進行解析時,可發現南高屏地區發生窩流效應的夜間,部分臭氧將滯留於美濃地區內部的山區之間。

      若以此模式分析高速公路網之改變對於週界臭氧濃度的影響時,模式分析出:開發二高後,在不同測站將造成臭氧尖峰濃度的改變。一般而言,開發二高會造成南高屏地區臭氧濃度普遍升高1-2ppb,單站單日尖峰值則甚至可提升臭氧最大小時濃度達9ppb左右。由於模式模擬的總排放量不變,因此可說明造成臭氧濃度的提升僅由於高速公路的排放量之空間分佈產生改變,亦即是氮氧化物的排放空間分佈改變而已。因而制訂管制策略時,應同時考慮排放空間的分佈。

      To perform air quality simulation studies in Taiwan, a PC cluster system with four personal computers with eight CPUs, a gigabit Ethernet switch and a RAID storage system has been setup. The operating system of the personal computer is Red Hat Linux 9, and a parallel library, MPICH, is installed. Finally, an air quality model framework, Models-3/CMAQ, is setup in the PC cluster system.

      The maximum performance of this system is about 13.3 Giga floats per second, which is tested by HPL software. The total CPU time is about 5 hours for an air quality simulation case, which with the following parameters: grid size is 70x100, vertical layer is 15 layers, chemical mechanism is CB4, computation scheme is ebi_cb4, and simulation period is 192 hours. Thus, a 24 hours forecasting case might be done within 70 minutes by using this cluster system. Furthermore, this PC cluster system is suitable for air quality simulation work.

      Two ozone episodes, 2002/12/14-17 and 2003/10/25-11/1 are selected to perform simulation works. Taiwan Emission Data System, TEDS with version 5.1, which based on year 2000 is used for emission inventory data in this study. At first, the emission inventory data is updated to 2002/12 and 2003/10. However, simulation results based on the updated emission inventory data show NO concentrations are over-estimation at Kaohsiung city and O3 concentrations are under estimated about 18%-50% at every site. The over estimation of mobile source emission in Kaohsiung city may cause NO concentration over estimation. While assuming the air quality and meteorological factors are correct, the under estimation of O3 concentrations may be caused by the uncertainty in emission data. Thus, an adjust factor has used in each emission type to correct the emission data of TEDS. The adjust factor of VOCs for area and mobile source is 3 and 4, respectively, and this adjustment of emission make the good simulation results for O3 concentrations. The simulation results using the adjusted emission show that the mean errors of the unpaired peak O3 concentration are generally less than 20%; and those of the paired O3 concentrations with greater then 60ppb are less than 30%. Correspondingly, the results simulated by the model are highly consistent with observed data.

      One case study evaluates the effects of emissions from power plants on the ambient air quality, especially O3 concentration by Models-3/CMAQ between 2003/10/25 and 2003/11/1. Three power plants locate in southern Taiwan contributed about 6.7% and 8% for NOx and SOx, respectively. Simulation results indicated that ambient O3 concentrations increased about 2 to 5 ppb in Kaoping area, while wind field formed eddy situation in southern Taiwan. However, the increased O3 concentrations will be transported to south-west sea of Taiwan, while no eddy situation occurred. Vis5d, a free OpenGL-based volumetric visualization program for scientific datasets in 3+ dimensions, is used to analyze the distribution of O3 concentrations. The analysis results show O3 concentrations will be remained at night in inland of Kaohsiung County, while eddy situation occurred.

      Another case study evaluates the impacts of emissions from the first and second highways on the ambient air quality, especially O3 concentration by Models-3/CMAQ between 2002/12/14 and 2002/12/17. Simulation results indicated that most ambient O3 concentrations increased by more than 2 ppb with hourly increments of up to 6 ppb, in both scenarios. Although the total emissions were the same, the differences among emission locations were responsible for substantial differences in ozone concentrations. The ozone concentrations decreased along the highway as the emissions increased, because of NO titration. However, the ozone concentrations were greater at sites that were further downwind. Therefore, the ozone concentrations changed significantly with the highway network, given the same total emission. The differences in ozone concentrations were caused by the changes in the emission locations of NOx.

    中文摘要………………………………………………… I 英文摘要………………………………………………… III 誌謝……………………………………………………… V 目錄……………………………………………………… VI 一、前言  1.1 研究緣起……………………………………… 1-1  1.2 研究目標……………………………………… 1-3 二、文獻回顧  2.1 南高屏地區臭氧濃度趨勢分析……………… 2-1   2.1.1 污染物濃度之長期變化趨勢…………… 2-1   2.1.2 空氣品質指標值(PSI)變化趨勢…………2-6   2.1.3 季節性變化……………………………… 2-9   2.1.4 南高屏地區監測站差異性分析………… 2-11   2.1.5 臭氧之垂直剖面分佈…………………… 2-11   2.1.6 小結……………………………………… 2-16  2.2 空氣品質模式簡介…………………………… 2-18   2.2.1 基礎光化學反應………………………… 2-18   2.2.2 EKMA approach與臭氧敏感性物種………2-19   2.2.3 One Atmosphere………………………… 2-20   2.2.4 空氣品質模式簡介……………………… 2-21  2.3 PC Cluster 的使用……………………………2-24   2.3.1 訊息傳遞語言MPI簡介……………………2-25  2.4 空氣品質模式 Models-3/CMAQ主架構……… 2-26   2.4.1 簡介……………………………………… 2-26   2.4.2 CCTM所使用之機制模組與計算模組…… 2-32    2.4.2.1 CCTM的模組控制程序……………… 2-34    2.4.2.2 氣相化學機制……………………… 2-38    2.4.2.3 CCTM之程式控制程序(Program control processing) 2-40   2.4.3 Models-3/CMAQ所適用之硬體平台………2-41   2.4.4 Models-3/CMAQ模式效能評估……………2-42  2.5 排放量資料庫 TEDS……………………………2-44  2.6 SMOKE 排放量資料庫處理模組……………… 2-46 三、研究方法  3.1 軟、硬體平台之建置………………………… 3-3   3.1.1 Linux PC Cluster之建置:硬體配備… 3-4   3.1.2 作業系統與平行運算所需的軟體……… 3-6  3.2 MM5氣象參數的取得與網格參數的定位………3-9  3.3 TEDS排放量資料庫整理……………………… 3-12   3.3.1 點源……………………………………… 3-12   3.3.2 線源……………………………………… 3-13   3.3.3 面源……………………………………… 3-14  3.4 SMOKE排放量處理模式之建置…………………3-16   3.4.1 點源排放處理…………………………… 3-16   3.4.2 面源排放處理…………………………… 3-18   3.4.3 線源排放處理…………………………… 3-20   3.4.4 生物源排放處理………………………… 3-21  3.5 Models-3/CMAQ 空氣品質模式之整體架構… 3-27  3.6 Cluster效能評估………………………………3-32  3.7 案例分析……………………………………… 3-33 四、叢集架構效能評估  4.1 High Performance Linpack,HPL……………4-2   4.1.1 HPL之運作與系統優化……………………4-2   4.1.2 效能評估………………………………… 4-4  4.2 Network Protocol Independent Performance Evaluator, NetPIPE…4-7   4.2.1 最大總傳輸量(throughput)…………… 4-7   4.2.2 網路的延遲效應………………………… 4-10  4.3 實際使用Models-3/CMAQ案例模擬……………4-12  4.4 Models-3/CMAQ模式整體評估…………………4-15  4.5 PC Cluster的耗電量測試…………………… 4-17  4.6 PC Cluster硬體平台選購建議……………… 4-19 五、2003基準年案例之系統敏感性分析  5.1 模擬之網格區域設定………………………… 5-1  5.2 2003/10/30-11/1案例期間之空氣品質分析…5-3  5.3 氣象參數模擬結果(MCIP)…………………… 5-6  5.4 2003/10月份基準案例模擬結果及排放量影響效應…5-14   5.4.1 SMOKE模式推估結果………………………5-14   5.4.2 基礎案例模擬結果……………………… 5-17   5.4.3、化學機制改變之影響……………………5-23  5.5 排放量處理…………………………………… 5-25  5.6 邊界值對於模式模擬之影響………………… 5-32   5.6.1 更改九公里網格的固定邊界值之影響… 5-36   5.6.2 使用東亞排放量資料四層網格之模擬結果 5-39 六、案例分析:電廠排放對週界臭氧濃度之影響  6.1 電廠排放量分析……………………………… 6-1  6.2 電廠排放對週界臭氧濃度之貢獻量………… 6-3  6.3 小結…………………………………………… 6-15 七、案例分析:高速公路網之改變對臭氧濃度衝擊  7.1 現象分析……………………………………… 7-1  7.2 模式前處理分析……………………………… 7-2   7.2.1 事件日挑選……………………………… 7-3   7.2.2 排放量分析……………………………… 7-4   7.2.3 模式設定………………………………… 7-6  7.3 結果分析……………………………………… 7-7   7.3.1 模式準確性評估………………………… 7-7   7.3.2 情境模擬解析…………………………… 7-14    7.3.2.1 情境模擬一:Case A – Case B… 7-14    7.3.2.2 情境模擬二:Case C – Case B… 7-17   7.3.3 高速公路網之改變對現行空氣品質監測網之臭氧濃度影響效應…7-17  7.4 小結…………………………………………… 7-22 八、結論 九、參考文獻 十、附錄

    1. A Quick Guide to iSCSI on Linux:http://www.cuddletech.com/articles/iscsi/index.html

    2. Akimoto, H., Narita, H., 1994, “Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1°x1° resolution.” Atmospheric Environment, V28, pp213-225.

    3. Appel, K.W., Gilliland, A., Eder, B., 2005, “An Operational Evaluation of the 2005 Release of Models-3 CMAQ version 4.5”, USEPA.

    4. Baumbach, G., Vogt, U., 1999, “Experimental determination of the effect of mountain – valley breeze circulation on air pollution in the vicinity of Freiburg.” Atmospheric Environment, V33, pp4019-4027.

    5. Briggs, C. A., 1972, “Discussion on Chimney Plumes in Neutral and Stable Surroundings.”, Atmospheric Environment, V6, pp:507-510.

    6. Briggs, G.A., 1984, “Plume rise and buoyancy effects”, Atmospheric Science and Power Production, Technical Information Center, U.S. Dept. of Energy, Oak Ridge, TN, pp:850.

    7. Carmichael, G.R., Streets, D.G., Calori, G., Amann, M., Jocobson, M.Z., Hansen, J., Ueda, H., “Changing trends in sulfur emissions in Asia: Implications for acid deposition, air pollution and climate”, Environmental Science and Technology, V36, pp4707-4713.

    8. Carter, W.P.L, 1994, “Development of ozone reactivity scales for volatile organic compounds.” Journal of air and Waste Management Association V44, pp881-889.

    9. Chen, K.S., Ho, Y.T., Lai, C.H., Chou, Y.M., 2003, “Photochemical modeling and analysis of meteorological parameters during ozone episodes I Kaohsiung, Taiwan.” Atmospheric Environment V37, pp1811-1823.

    10.Chinkin, L.R., Coe, D.L., Funk, T.H., Hafner, H.R., Roberts, P.T., Ryan, P.A., 2003. “Weekday versus Weekend Activity Patterns for Ozone Percursor Emissions in California’s South Coast Air Basin.” Journal of the Air and Waste Management Association 53, pp:829-843.

    11.Chow, J. C. et al., 1996, “Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations During SJVAQS/AUSPEX”, Atmospheric Environment V30, pp:2079-2112.

    12.Colella, P., Woodward, P. L., “The Piecewise Parabolic Method(PPM) for gas-dynamical simulations”, J. Comp. Phys. V54, pp:174-201.

    13.Dennis, R.L., Byun, D.W., Novak, J.H., Galluppi, K.J., Coast, C.J., 1996, “The next generation of integrated air quality modeling: EPA’s Models-3.”, Atmospheric Environment V30, pp1925-1938.

    14.Dodge, M.C., 1989, “A comparison of three photochemical oxidant mechanisms.” Journal of Geophysical Research, V94, pp5121-5136.

    15.Gao, O.H., Holmen, B.A., Niemeier, D.A., 2005. “Nonparametric Factorial Analysis of Daily Weigh-in-Motion Traffic: Implications for the Ozone “Weekend Effect” in Southern California.” Atmospheric Environment 39, pp:1669-1682.

    16.Gipson, J, Schere, K., 2003, “The U.S. EPA Community Multiscale Air Quality (CMAQ) Modeling System – Gas-Phase Chemistry”, CMAQ Model Peer Review Meeting, R.T.P, NC, 2003/12/17.

    17.Gustafson, J.L., Todi, R., “Conventional Benchmarks as a Sample of the Performance Spectrum”, report of Applied Mathematical Sciences Program of the Ames Laboratory-U.S. Department of Energy, W-7405-ENG-80.

    18.Gusten, H., Heinrich, G., Monnich, E., Weppner, J., 1997, “Thessaloniki’91 field measurement campaign – II. Ozone formation in the greater Thessaloniki area.” Atmospheric Environment, V37, pp1115-1126.

    19.Hidy, G.M., 2000, “Ozone process insights from field experiments Part I: overview”, Atmospheric Environment, V34, pp2001-2022.

    20.Huang, H.C., Chang, J. S.,2001, “On the performance of numerical solvers for a chemistry submodel in three-dimensional air quality models, Part1 Box-model simulations.” Journal of Geophysical Research, V106, No. D17, pp:20175-20188.

    21.Hough, A., 1988, “An intercomparison of mechanisms for the production of photochemical oxidants.” Journal of Geophysical Research, V93, pp3789-3812.

    22.Hogrefe, C., Biswas, J., Lynn, B., Civerolo, K., Ku, J.Y., Rosenthal, J., Rosenzweig, C., Goldberg, R., Kinney, P.L., 2004, “Simulating regional-scale ozone climatology over the eastern United States: model evaluation results.” Atmospheric Environment, V38, pp:2627-2638.

    23.Jang, J. C., Chang, N.B., 2000, “Development and application of U.S. EPA’s Models-3:an integrated “One-Atmosphere” Third-generation air quality modeling system”, Journal of the Chinese Institute of Environmental Engineering, V10, pp:19-34.

    24.Jimenez, P., Parra, R. Gasso, S., Maldasano, J.M., 2005, “Modeling the Ozone Weekend Effect in Very Complex Terrains: A Case Study in the Northeastern Iberian Peninsula.” Atmospheric Environment V39, pp:426-444.

    25.Klimont, Z., Streets, D.G., Gupta, S., Cofala, J., Lixin, F., Ichikawa, Y., 2002a, “Anthropogenic emissions of non-methane volatile organic compounds in China.” Atmospheric Environment, V36, pp1309-1322.

    26.Kumar, N., Russell, A.G., 1996, “Multiscale air quality modeling of the Northeastern United States.” Atmospheric Environment V30, 1099-1116.

    27.Leone, J.A., Seinfeld, J.H., 1985, “Comparative analysis of chemical reaction mechanisms for photochemical smog.” Atmospheric Environment, V19, pp437-464.

    28.Linpack benchmark: http://www.top500.org/lists/linpack.php, http://www.netlib.org/benchmark/hpl/。

    29.Lu, C.H., Chang, J.S., 1998, “On the indicator-based approach to access ozone sensitivities and emissions features.”, Journal of Geophysical Research V103, pp3453-3462.

    30.MPICH:http://www-unix.mcs.anl.gov/mpi/mpich/

    31.MPIF:http://www.mpi-forum.org/

    32.National Research Council (NRC), 1991, “Rethinking the Ozone Problem in Urban and Regional Air Pollution.”, National Academy Press, Washington, District of Columbia.

    33.NetCDF library:http://www.unidata.ucar.edu/software/netcdf/

    34.Netperf, http://www.cup.hp.com

    35.Schere, K.L., Demerjian, K.L., 1984, “User’s Guide for the Photochemical Box Model (PBM).”, EPA-600/8-84-022a, U.S. Environmental Protection Agency, Research Triangle Park, N.C.

    36.Seinfeld, J.H., 1986, “Atmospheric Chemistry and Physics of Air Pollution”, Wiley Interscience, New York.

    37.Sillman, S., Logan, L.A., Wofsy, S.C., 1995, “The sensitivity of ozone to nitrogen and hydrocarbons in regional ozone episodes.”, Journal of Geophysical Research V100, pp14175-14188.

    38.SMOKE user’s manual v 2.0: http://www.cmascenter.org/

    39.Snell, Q.O., Mikler, A.R., Gustafson, J.L., “NetPIPE: A Network Protocol Independent Performance Evaluator”, Ames Laboratory / Scalable Computing Lab, Iowa State., 1997.

    40.Solomon, P.A, 1994, “Measurement of NO, NO2, NOx, and NOy in the Atmosphere: Recommendations for SJVAQS/AUSPEX” in Planning and Managing Regional Air Quality Modeling and Measurement Studies: A Perspective through the San Joaquin Valley Air Quality Study and AUSPEX, pp. 737-767. Lewis, USA.

    41.Solomon, P., Cowling, E., Hidy, G., Furiness, C., 2000, “Comparison of Scientific findings from major ozone field studies in North America and Europe”, Atmospheric Environment, V34, pp1885-1920.

    42.Sterling, T.L., Salmon, J., Becker, D.J., Savarese, D.F., 1999, “How to Build a Beowulf – A Guide to the Implementation and Application of PC Cluster”, The MIT Press, Cambridge, Massachusetts, London, England.

    43.Streets, D.G., Waldhoff, S.T., 2000, “Present and future emissions of air pollutants in China: SO2, NOx and CO.” Atmospheric Environment, V34, pp363-374.

    44.Suppan, P. Schadler, G., 2004, “The Impact of Highway Emissions on Ozone and Nitrogen Oxide Levels during Specific Meteorological Conditions.” Science of the Total Environment V334-335, pp:215-222.

    45.ttcp: http://www.epm.ornl.gov/ batsell/NB.html

    46.The Beowulf Project:http://www.beowulf.org

    47.Tsai, D.M., Wu, Y.L., 2002, “Simulation of particulate matter in southern Taiwan by Models-3/CMAQ”, 6th aerosol conference, Taipei, Taiwan, 2002.

    48.Turner, D., Chen, X., 2002, “Protocol-Dependent Message-Passing Performance on Linux Clusters”, Cluster 2002 conference in Chicago on September 25th of 2002.

    49.US EPA, 1991, “Guideline for Regulatory Application of the Urban Airched Model.” US EPA Report No. EPA-450/4-91-013, Office of Air and Radiation. Office of Air Quality Planning and Standards, Technical Support Division, Research Triangle Park, North Carolina, US.

    50.US EPA, 1999, “User Manual for the EPA Third-Generation Air Quality Modeling System(Models-3 Version 3.0)”, EPA-600/R-99/055.

    51.US EPA, 1999, “Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System”, EPA/600/R-99/030.

    52.Whitby K.T., Sverdrup, G.M., 1980, “California Aerosols: Their Physical and Chemical Characteristics.” Adv. Environ. Sci. Technol. V10, pp:477.

    53.Wong, P., Wijngaart, R.F., 2003, “NAS Parallel Benchmarks I/O Version 2.4”, NAS Technical Report NAS-03-002, NASA Ames Research Center.

    54.Wu, Y.L., 2004, “Evaluation of Ozone Concentrations at Residence Layer in the Southern Taiwan by CMAQ”, Models-3 Use’s Conference, 2004, Raleigh Durham, Franklin, American.

    55.Yu, T.Y., Chang, L.F.W., 2000, “Selection of scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis”, Atmospheric Environment, V34, pp4499-4509.

    56.Zhang, J.; Rao, S.T.; Daggupaty, S.M., 1998, “Meteorological processes and ozone exceedances in the northeastern United States during the 12-16 July 1995 episode”, Journal of Applied Meteorology, V37, pp776-789.

    57.全球前五百大快速電腦:http://www.top500.org/

    58.王建鈞,2005,『台灣地區空氣污染排放處理系統之建立研究』,雲林科技大學碩士論文。

    59.行政院環保署,1995,『中華民國台灣地區環境資訊』84年版--第三章空氣品質;

    60.行政院環保署,1996,『空氣品質保護25年紀實』;

    61.行政院環保署,1999,『空氣污染總量管制制度推行先期作業及空氣污染物排放量推估標準方法建立』,中鼎工程顧問公司;

    62.行政院環保署,2002,『空氣品質模式支援中心運作及建立』,期末報告。

    63.行政院環保署,2003,『空氣污染物排放量清冊更新管理及空氣品質質損量推估(I)』,中鼎工程顧問公司。

    64.行政院環保署空保處網站:http://taqm.epa.gov.tw/emc/default.aspx?pid=b0201&cid=b0201;

    65.吳義林,1997,『南高屏地區自動監測站對空氣品質解析能力及VOCs組成份觀測資料之分析』,環保署期末報告。

    66.吳義林、張艮輝,2000,『台灣地區空氣品質時空分佈特性分析』,環保署專案計畫期末報告。

    67.吳義林、蔡德明、吳俊傑、周昆炫、鄭福田,2002,『電廠排放對南高屏地區臭氧濃度的影響』,台灣電力公司期末報告。

    68.吳志強、許書維廖力蓉、范家鳳、蕭養成、江宙君、劉遵賢、李晶、張時禹,2005,『區域性氣象模式及大氣或學模式運算效能與演算法之探討』,第二十二屆空氣污染控制技術研討會,桃園中壢,中央大學。

    69.林清和、吳義林、賴進興、林博雄、賴信志,2003,『本縣周邊及沿海縱向尺度氣象及探空資料、污染物濃度分析及模式模擬境外移入對本縣空氣品質之影響』,高雄縣政府環境保護局專案計畫。

    70.林清和,2005,『高屏空品區臭氧空氣品質不良成因探討與前驅污染物質來源分析,子計畫一:臭氧前驅物排放與氣象因數對於高屏地區臭氧濃度之影響分析』,環保暑期末報告。

    71.張能復、蔡俊鴻、吳義林,1996,1997,1998,『都會區臭氧污染趨勢分析--第一、二、三年』,環保署專案計畫期末報告。

    72.張章堂,1999,『南高屏地區空氣污染總量管制規劃子計畫A4:南高屏地區濃、林、礦業及雜項排放量整合與推估』,環保署期末報告。

    73.張艮輝,2000,『南高屏地區空氣污染總量管制規劃—台灣地區生物源VOCs排放量推估及模式建置』,環保署期末報告。

    74.張育禎,2005,『東亞地區生物源排放量模式之建立與推估』,雲林科技大學碩士論文。

    75.陳伯文,2001,『代理人架構下分散式平行運算平台之設計與建構』,元智大學碩士論文。

    76.賴信志,2005,『高屏地區臭氧污染事件日期間之氣流特性與其對臭氧前驅物傳輸之影響』,環保署專案計畫期末報告。

    77.陳賢焜、吳義林,1999,『高雄縣懸浮微粒PM10與PM2.5之成分與來源』,高雄縣環保局八十八年度學術機構空氣污染防治措施研究及訓練計畫期末報告。

    78.陳穩至,2000,『大氣中懸浮微粒之特性與來源』,成功大學碩士論文。

    79.蔡德明、林勇名、吳義林,1999,『臭氧敏感性指標物種與臭氧生成相關性之研究』,第十六屆空氣污染控制技術研討會;

    80.蔡德明,『Cluster安裝流程介紹』:http://linux.vbird.org/linux_server/0600cluster.php

    81.蔡宓志,1996,『汽機車含苯環揮發性有機物排放因子之研究』,成功大學碩士論文。

    82.曹振南,2004,『如何做Linpack測試及性能優化』,中科院計算所智能中心技術報告,大陸。

    下載圖示 校內:立即公開
    校外:2006-06-28公開
    QR CODE