| 研究生: |
莊峻豪 Chuang, Chun-Hao |
|---|---|
| 論文名稱: |
應用反應曲面法配合基因演算法進行單鑲嵌銅導線之應力誘發空洞現象最佳化設計 Optimal Design of Stress-induced Voiding Phenomena in Single Damascene Copper Interconnect Through Response Surface Method with Genetic Algorithm |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 應力誘發空洞 、單鑲嵌銅導線 、反應曲面法 、基因演算法 |
| 外文關鍵詞: | Stress-induced Voiding, Single Damascene Copper Interconnect, Response Surface Method, Genetic Algorithm. |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於1984年,發現了一種稱為應力誘發空洞現象的破壞形式,該現象強烈的影響導線之穩定性。應力誘發空洞現象之緣由為元件於製程溫度降至室溫時,各元件熱應變不一致所造成。應力誘發空洞之評估準則為靜水壓力,其使銅線產生空洞,甚至發生斷路,因而對銅線穩定性造成嚴重影響。
本文因考量單鑲嵌銅導線之實驗需耗費大量時間與金錢,故使用有限元素分析軟體ANSYS進行模擬。於本單鑲嵌銅導線分析,使用五種低介電薄膜搭配三種擴散阻障層材料進行交錯比對。並給予溫度負載從無應力狀態350℃降至室溫25℃。在此模擬設定下,發現擴散阻障層用Ti搭配低介電薄膜用SiLK可得勝過其餘材料搭配之結果,獲得最小靜水壓力。並以此材料組合進行各種最佳化實驗配置,如反應曲面法及基因演算法。最後,可得最佳因子水準搭配,使靜水壓力比原始水準降低20%。
A special failure mode called Stress-induced Voiding (SIV) was first reported in 1984. It is generated by thermal strain mismatches during cooling from processing temperature to room temperature. The propensity of SIV in copper interconnects can be affected by the hydrostatic stress, which is related to the driving force for void nucleation. The SIV phenomenon have a strongly impact on reliability of copper interconnects.
In this study, considering the experiments need lots of time and money, we use finite element analysis software ANSYS to simulate the single damascene copper interconnects. The single damascene copper interconnects structure incorporating five different dielectric materials and three different diffusion barrier materials. Calculations were performed from stress-free temperature 350℃ to room temperature 25℃. For this purpose, we found that diffusion barrier use Ti and Low-k dielectric use SiLK could get the smallest hydrostatic stress. Finally, by an optimal design of Response Surface Method (RSM) with Genetic Algorithm (GA), the maximum hydrostatic stress decrease 20% than original design.
[1] Ho P.S, Yeo I.S, Liao C.N, Anderson S.G.H, Kawasaki H
Conf. on Solid-State and Integrated Circuit
4th Int. Technology (Beijing, China), pp 408-412, 1995.
[2] Jeffrey P. Gambino. Tom C. LF Chen. Timothy D.
“Reliability of Copper Interconnects: Stress-Induced Voids”
ECS T. pp. 205-211, 2009
[3] C. M. Tan, A. Roy, A. V. Vairagar, Krishnamoorthy A. , Mhaisalkar S. G.
“Current crowding effect on copper dual damascene via bottom failure for ULSI applications”
IEEE Trans., Device Mater, Reliab, Issue 5, pp.198-205, 2005
[4] L. T. Shi, K. N. Tu.
“Finite-element modeling of stress distribution and migration in interconnecting studs of a three-dimensional multilevel device structure.”
Appl Phys Lett, 65, pp.1516-8, 1994
[5] C.K. Hu, L. Gignac, E. Liniger, and R. Rosenberg,
“Electromigration in On-Chip Single/Dual Damascene Cu Interconnections”,
J. Electrochem. Soc., 149, pp.408-415, 2004
[6] C.S. Hau-Rieged, C.V. Thompson
“Electromigration in Cu Interconnects with Very Different Grain Structures,”
Appl. Phys. Lett., 78, pp.3451-3453. 2001
[7] H. Ono, T. Nakano, T. Ohta,
Appl. Phys. Lett., Vol 64, pp. 1511, 1994.
[8] E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, M. A. Nicolet,
J. Appl. Phys., Vol 70, pp.1369, 1991.
[9] Y. L. Shen.
“Thermo-mechanical stresses in copper interconnects - A modeling analysis.”
Microelectron Eng ;83: pp.446-59., 2006.
[10] Copyright © 2004 www.SiliconFarEast.com.
http://www.siliconfareast.com/sio2si3n4.htm
[11] Jiann-Shing Jeng
“Thermal Reactions Between Sputtered Copper Thin Film and Low Dielectric Constant Materials”
成功大學博士論文, 2003
[12] Masayuki Tanaka, Shigehiko Saida, Tadashi Iijima , Yoshitaka Tsunashima
“Low-k SIN Film for Cu Interconnects Integration Fabricated by Ultra Low Temperature Thermal CVD”
Shinsugita, Isogo, Yokohama, Kanagawa, 1999
[13] D. Ang, C. C. Wong, R. V. Ramaujan.
“The effect of aspect ratio scaling on hydrostatic stress in passivated interconnects. “
Thin Soild Films, 515, pp.3246-52, 2006
[14] A. Roy, C. M. Tan, R. Kumar, X. T. Chen.
“Effect of test condition and stress free temperature on the electromigration failure of Cu dual damascene submicron interconnect line-via test structures.”
Microelectron Reliab, 45, pp.1443-8., 2005
[15] A. Mathewson, J. F. Rohan, in: D. Tsoukalas, C. Tsamis, “Simulation of Semiconductor Processes and Devices”
Springer, pp.364-7., 2001
[16] Y. B. Park, I. S. Jeon.
“Mechanical stress evolution in metal interconnects for various line aspect ratios and passivation dielectrics. “
Microeletron Eng, 69, pp.26-36, 2003
[17] J. Zhang, M. O. Bloomfield, J. Q. Lu, R. J. Gutmann, T. S. Cale.
“Thermal stresses in 3D IC inter-wafer interconnects.”
Microelectron Eng, 82, pp.534-47, 2005
[18] H. Okabayashi.
“Stress-induced void formation in metallization for integrated circuits. “
Mater Sci Eng R, 11, pp.191-241, 1993
[19] Yue jin Hou and Cher Ming Tan
“Stress-induced voiding study in integrated circuit interconnects”
Semicond. Sci. Technol. 23, pp.9, 2008
[20] J. Klema, R. Pyle, and E. Domangue,
IEEE Proc. Int. Reliab. Phys. Symp. 22. 1, 1984
[21] Ping Xu, Kegang Huang, Anjana Patel, Sudha Rathi, Betty Tang, John Ferguson, Judy Huang and Chris Ngai
“BLOK- A LOW-K Dielectric Barrier Etch Stop Film for Copper Damascene Applications”
IEEE ., 1999
[22] http://accuratus.com/silicar.html
©2002 Accuratus
[23] Guangjie Yuan, Leng Chen
“Finite element simulation of hydrostatic stress in 100nm thick copper interconnects”
[24] Guotao Wang, Dongwen Gan, Steven Groothuis ,Paul S. Ho
“Investigation of Residual Stress in Wafer Level Interconnect Structures Induced by Wafer Processing”
IEEE Electronic Components and Technology Conference, 2006
[25] S. H. Rhee, Y. Du, P. S. Ho.
“Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structure. “
J Appl. Phys, 93, pp.3926-33, 2003
[26] Y. L. Shen, Y. L. Guo, C. A. Minor
“Voiding induced stress redistribution and its reliability implications in metal interconnects”
Acta mater. 48, pp.1667–1678, 2000
[27] Jong-Min Paik, Hyun Park, and Young-Chang Joo
“Stress and Stress Voiding in Cu/Low -k Interconnects”
Journal of semiconductor technology and science, vol.3, No.3, 2003
[28] S. Orain, A. Fuchsmann, V. Fiori, X. Federspiel
“Reliability issues in Cu/low-k structures regarding the initiation of stress-voiding or crack failure”
Microelectronic Engineering , No.83, pp.2402–2406, 2006
[29] J. Curry, G. Fitzgibbon, Y. Guan, R. MuolIo, G. Nelson, and A. Thomas,
2nd Annual International Reliability Symposium IEEE, New York, pp.6, 1984
[30] 吳文發,秦玉龍
“電遷移效應對銅導線可靠度之影響”
NDL奈米通訊,第六卷第一期
[31] © University of Cambridge
http://www.doitpoms.ac.uk/tlplib/electromigration/flux_2.php
[32] 政治大學科技管理研究所©創新科技網
http://www.hightech.url.tw/index.php?option=com_content&view=article&id=118:2010-06-13-13-43-26&catid=1:2010-05-01-15-47-19&Itemid=13
[33] 吳世全
"銅金屬導線之發展與研製評估"
國家奈米元件實驗室, 第五卷第三期
[34] 劉柏村、張鼎張
“低介電常數材料應用於導體連線製程技術的探討”
國家奈米元件實驗室,奈米通訊第九卷第二期
[35] 菊地正典
半導體製造裝置”
2008 , 世茂圖書
校內:2016-07-27公開