簡易檢索 / 詳目顯示

研究生: 劉高享
Liu, Kao-Sheang
論文名稱: 參數最佳化法應用於最短時間爬升軌跡之研究
A Study of Minimum Time-to-Climb Trajectories by Using a Parametric Optimization Method
指導教授: 許棟龍
Shue, Dong-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 65
中文關鍵詞: 最佳控制最短時間軌跡
外文關鍵詞: optimal control, minimum time trajectory
相關次數: 點閱:39下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於,根據以往最佳控制理論,應用坡度法之數值計算所得最佳飛行軌跡,其計算過於繁複,且收斂不易,在應用上有其難處。本論文係利用參數最佳化法,分析飛機最短時間爬升之軌跡。在此兩點邊界值問題中,最短時間爬升之性能指標為終端時間。本文所採用的參數最佳化法是假設負荷因子為時間的多項式函數其係數為控制參數,並利用最佳控制理論導出最佳化之必要條件。為了驗證理論之正確性,本研究以電腦作數值模擬,並嘗試改變飛機之各種初始及終端條件,分析這些條件對於最佳軌跡之影響。

      Since the analysis of the optimal trajectories using the optimal control theory associated with the gradient method are numerically very difficult due to the convergence problem, often it can not be applied effectively to solve many typical problems, In this thesis, the parametric optimization method is applied to analyze the minimum time-to-climb trajectory. In this two-point-boundary-value problem(TPBVP), the performance index is the terminal time and the load factor is the control which is assumed to be a polynominal function of the time. The coefficients of the polynominal function are taken as a set of parameters to optimize the performance index. Accordingly, necessary conditions for optimality are derived as a set of nonlinear simultaneous algebraic equations which in combination with the terminal conditions
    are used for solving a set of parameters. In order to validate the theory, a numerical problem is given. With the given problem, the effects of initial conditions and final conditions on the mimnimum time-to-climb trajectories are investigated.

    摘要----------------------------------- i Abstract------------------------------- ii 誌謝----------------------------------- iii 目錄----------------------------------- iv 圖目錄--------------------------------- vi 表目錄--------------------------------- ix 符號表--------------------------------- x 一、緒論------------------------------- 1 1.1 研究動機------------------------- 1 1.2 文獻回顧------------------------- 2 1.3 研究方法------------------------- 3 二、運動方程式之推導------------------- 4 2.1 座標系之定----------------------- 4 2.2 運動方程式----------------------- 5 三、最佳軌跡之必要條件----------------- 9 3.1 最佳化之必要條件----------------- 9 3.2 牛頓法求解----------------------- 12 四、數值模擬與分析--------------------- 17 4.1 端點遞增法之應用----------------- 17 4.2 最短時間爬升之軌跡--------------- 19 4.3 參數最佳化法與坡度法之比較------- 25 五、邊界條件對於軌跡影響之分析--------- 26 5.1 不同初始高度對於爬升軌跡之影響--- 26 5.2 不同終端高度對於爬升軌跡之影響--- 32 5.3 不同初始速度對於爬升軌跡之影響--- 39 5.4 不同終端速度對於爬升軌跡之影響--- 45 六、結論------------------------------- 52 參考文獻------------------------------- 53 附錄 A、大氣密度、溫度及音速---------------- 55 B、狀態變數之導數---------------------- 56 C、空氣動力與推力資料------------------ 63 自述

    [1] Connor, M. A.,"Optimization of a Lateral Turn at Constant Heigh," AIAA Journal, Vol.5, No.7, February 1967, pp.335-338.

    [2] Bryson, A. E., and Hedrick, J. K.," Minimum Time turns for a Supersonic Aircraft at a Constant Altitude," Journal of Aircraft, Vol.8, No.3, March 1971,pp.182-187.

    [3] Beebee, W., "Time Optimal Coordinated Turns Using Energy Methods," Measurement System Laboratory Report, MIT, Cambridge Masssachusetts, U.S.A. May 1970.

    [4] Bryson, A. E.,Jr., and Denham, W. F., "Optimal Programming Problems With Inequality Constraints I: Necessary Condition for Extermal Solution" AIAA Journal Vol.1, No.11, Jan. 1963, pp.2544-2550.

    [5] Bryson, A. E., Jr., and Denham, W. F., "Optimal Programming with Inequality Constraints II: Solution by Styeepest-Ascent," AIAA Journal, Vol.2, No.1, Jan. 1964, pp.25-34.

    [6] Jacobson, D. H., " New Second-Order and First-Order Algorithms for Determining Optimal Control: A Differential Dynamic Programing Approach," Journal of Optimization Theory and Applications, Vol.2, No.6, 1968, pp.411-440.

    [7] Bryson, A. E., Jr., and Ho, Y. C., Applied Optimal Control, Wiley, New York, 1975.

    [8] 許棟龍,「二階波度法應用於最佳飛行軌跡問題」國科會計劃報告編號:NSC 84-2212-E-006-001,1984。

    [9] 何旅良,「應用二階坡度法結合攝動法以解最短時間飛行問題,」國立成功大學碩士論文,1996。

    [10] Ardema, M. D., " Solution of the Minimum Time-to-Climb Problem by Matched Asymptotic Expansion," AIAA Journal, Vol.14, No.7, February 1976,pp.843-850.

    [11] Rao, A. V., and Mease, K. D., "Minimum Time-to-Climb Trajectories Using a Modified Sweep Method," AIAA Journal, Navigation and Control Conference, 1995, pp.~826--833.

    [12] 許棟龍,「大氣飛行之最佳軌跡課程講義」,國立成功大學航太研究所,2000。

    [13] Bryson, A. E.,Jr., and Desia, M. N., "Energy-State Approximation in Performance Optimization of Supersonic Aircraft," Journal of Aircraft, Vol.6, No.6, November-December 1969, pp.481-488.

    下載圖示 校內:立即公開
    校外:2004-08-11公開
    QR CODE