簡易檢索 / 詳目顯示

研究生: 張寶玉
Chang, Bao-Yu
論文名稱: 利用液相剝離法製備層狀二硫化鉬應用於室溫氣體感測
Layered MoS2 Prepared by Liquid Phase Exfoliation and Its Application to Room Temperature Gas Sensing
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: 二維材料層狀結構二硫化鉬室溫氣體感測
外文關鍵詞: Two-dimensional materials, Layered-structure, Molybdenum disulfide, Room temperature gas sensing
相關次數: 點閱:195下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用液相剝離法製備大量且大面積的二硫化鉬奈米片,溶劑選擇低成本且低沸點的45vol%乙醇溶液,接著在真空退火爐管通入氧氣達到表面氧化作為改質,分別製作成奈米元件進行室溫氣體感測性質分析。在分析上分別以微拉曼光譜(Micro-Raman)和紫外/可見光/近紅光吸收光譜(UV-vis)分析45vol%的乙醇溶液剝離效果;利用掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)、穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)及X光繞射觀察二硫化鉬奈米片之表面形貌與微結構;藉由即時記錄氣體感測過程的電流變化,探討在氣體吸附在奈米片上的機制,改質後的二硫化鉬偵測氨氣氣體感測之靈敏度上升;卻對乙醇氣體的靈敏度降低。證實利用簡易的表面改質方式可以提升二硫化鉬氣體感測的表現,並能在低濃度(0.7ppm)的氨氣具有相當好的氣體靈敏度,證實本研究在室溫氣體感測是具有競爭力。

    This study investigates room temperature gas sensing of MoS2 nanosheets synthesized by liquid phase exfoliation followed by annealing in oxygen atmosphere. Scanning electron microscopy images clearly showed that 45vol% ethanol could exfoliate bulk MoS2 into nanosheets. Raman spectrometry and ultraviolet-visible spectrometry also showed that 45vol% ethanol successfully exfoliated bulk MoS2 into few layers. The structure of MoS2 nanosheets was analyzed using Transmission electron microscopy. X-ray photoelectron spectroscopy clearly showed that Mo and S were partially oxidized. Using annealing in oxygen atmosphere, as surface modification, the performance of MoS2 gas sensing could be improved. Using oxidized MoS2 nanosheets, the sensitivity of 0.7ppm NH3 was enhanced from 8.1% to 8.6% at room temperature.

    中文摘要 I Extended Abstract II 誌謝 VIII 表目錄 XII 圖目錄 XII 第一章 序論 1 1-1 二維材料的發展歷史 1 1-1-1 二硫化鉬的發展歷史 2 1-1-2 二維二硫化鉬的簡介 3 1-2 研究動機 5 第二章 文獻回顧 7 2-1 二維之二硫化鉬結構 7 2-1-1 二硫化鉬之電子能帶結構 10 2-1-2 二硫化鉬分子震動特性與拉曼光譜 13 2-1-3 二硫化鉬之光學性質 15 2-2 二維二硫化鉬之製備 19 2-2-1 Top-down Methods 19 2-2-2 Bottom-up Methods 22 2-3 氣體感測概論 23 2-3-1 氣體感測常用名詞 24 2-3-2 氣體吸/脫附理論 25 2-3-2-1 物理性吸附(Physisorption) 25 2-3-2-2 化學性吸附(Chemisorption) 25 2-4 二硫化鉬應用於氣體感測 26 第三章 實驗設備與步驟 36 3-1 實驗流程 36 3-1-1 二硫化鉬奈米片製備 37 3-1-1-1 基板清洗 37 3-1-1-2 液相剝離法製備二硫化鉬奈米片 37 3-1-2 二硫化鉬奈米片表面改質 38 3-2 實驗設備 39 3-2-1 真空退火爐系統 39 3-2-2 氣體感測系統 39 3-3 微結構、成分及表面分析 41 3-3-1 高解析掃描式電子顯微鏡(High Resolution Scanning Electron Microscope, HR-SEM) 41 3-3-2 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 43 3-3-3 X光繞射儀(X-ray Diffraction, XRD) 45 3-3-4 X光光電子光譜儀(X-ray Photoelectron Spectrometer, XPS) 46 3-4 光學性質及分子震動特性分析 47 3-4-1 微拉曼光譜量測系統(Micro-Raman Spectrometer, μ-Raman) 47 3-4-2 紫外光可見/近紅外光分光光譜(UV/VIS/NIR Spectrophotometer) 48 第四章 結果與討論 49 4-1 液相剝離法製備二硫化鉬奈米片 49 4-1-1 表面形貌分析 49 4-1-2 二硫化鉬分子震動及光學性質分析 52 4-1-2-1 二硫化鉬奈米片之拉曼光譜 52 4-1-2-2 二硫化鉬奈米片之UV-vis吸收光譜 55 4-1-3 小結 57 4-1-4 二硫化鉬奈米片之表面成分及其鍵結態分析 58 4-1-5 二硫化鉬奈米片之X-ray繞射 62 4-1-6 二硫化鉬奈米片之微結構及成分分析 64 4-1-7 電性量測及氣體感測量測 66 4-1-8 二硫化鉬氣體感測機制討論 72 4-2 二硫化鉬之表面改質分析 75 4-2-1 表面改質二硫化鉬奈米片之結構分析 76 4-2-2 表面改質二硫化鉬奈米片表面成分分析 78 4-2-2-1 表面改質二硫化鉬之拉曼光譜分析 78 4-2-2-2 表面改質二硫化鉬之表面成分及鍵結態分析 80 4-2-3 小結 86 4-2-4 表面改質二硫化鉬之表面形貌及微結構分析 86 4-2-6 表面改質二硫化鉬之氣體感測機制討論 94 4-3 二硫化鉬奈米片與表面改質二硫化鉬之氣體感測比較 97 第五章 結論 101 第六章 參考文獻 103

    [1] A. K. Geim, K. S. Novoselov, Nature Materials 2007, 6, 183.
    [2] A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.
    [3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat Nanotechnol 2012, 7, 699.
    [4] J. M. Martin, C. Donnet, T. Le Mogne, T. Epicier, Physical Review B 1993, 48, 10583.
    [5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat Nanotechnol 2011, 6, 147.
    [6] X. Huang, Z. Zeng, H. Zhang, Chem Soc Rev 2013, 42, 1934.
    [7] M. Xu, T. Liang, M. Shi, H. Chen, Chem Rev 2013, 113, 3766.
    [8] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat Chem 2013, 5, 263.
    [9] J. A. Wilson, A. D. Yoffe, Advances in Physics 1969, 18, 193.
    [10] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 2012, 6, 7311.
    [11] T. Li, G. Galli, Journal of Physicsal Chemistry C 2007, 111, 16192.
    [12] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett 2010, 10, 1271.
    [13] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, Advanced Functional Materials 2012, 22, 1385.
    [14] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.
    [15] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys Rev Lett 2010, 105, 136805.
    [16] E. P. Nguyen, B. J. Carey, T. Daeneke, J. Z. Ou, K. Latham, S. Zhuiykov, K. Kalantar-zadeh, Chemistry of Materials 2015, 27, 53.
    [17] X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, J. Wang, Nanoscale 2015, 7, 2978.
    [18] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett 2011, 11, 5111.
    [19] M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger, A. Kis, Nanotechnology 2011, 22, 125706.
    [20] R. Ganatra, Q. Zhang, ACS Nano 2014, 8, 4074.
    [21] K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, H. L. Zhang, Angew Chem Int Ed Engl 2011, 50, 10839.
    [22] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
    [23] R. Lv, H. Terrones, A. L. Elías, N. Perea-López, H. R. Gutiérrez, E. Cruz-Silva, L. P. Rajukumar, M. S. Dresselhaus, M. Terrones, Nano Today 2015, 10, 559.
    [24] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, T. W. Lin, Adv Mater 2012, 24, 2320.
    [25] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, Small 2012, 8, 966.
    [26] K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, L. J. Li, Nano Lett 2012, 12, 1538.
    [27] P. K. Kannan, D. J. Late, H. Morgan, C. S. Rout, Nanoscale 2015, 7, 13293.
    [28] V. E. Bochenkov, G. Sergeev, Metal Oxide Nanostructures and Their Applications 2010, 3.
    [29] 楊子瑩, 國立成功大學 碩士論文 2013.
    [30] M. Batzill, U. Diebold, Progress in Surface Science 2005, 79, 47.
    [31] B. Cho, M. G. Hahm, M. Choi, J. Yoon, A. R. Kim, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song, Y. Jeong, K. S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, P. M. Ajayan, D. H. Kim, Sci Rep 2015, 5, 8052.
    [32] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. Fam, A. I. Tok, Q. Zhang, H. Zhang, Small 2012, 8, 63.
    [33] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, B. T. Jonker, Nano Lett 2013, 13, 668.
    [34] J. S. Kim, H. W. Yoo, H. O. Choi, H. T. Jung, Nano Letters 2014, 14, 5941.
    [35] M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Sensors and Actuators B: Chemical 2015, 207, Part A, 602.
    [36] C. N. Rao, K. Gopalakrishnan, U. Maitra, ACS Appl Mater Interfaces 2015, 7, 7809.
    [37] A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L. F. Drummy, R. A. Vaia, Chemistry of Materials 2016, 28, 337.
    [38] A. Ciesielski, P. Samorì, Chem. Soc. Rev. 2014, 43, 381.
    [39] SU-8000, Hitachi High Technology, Japan.
    [40] JEM-2100F, JEOL Ltd., Japan.
    [41] 汪建民, 材料分析 Materials Analysis 1998.
    [42] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析 1993.
    [43] Micro-Raman 使用手冊, 國立成功大學微奈米科技研究中心.
    [44] UV/VIS/NIR 光譜儀, 國立成功大學微奈米科技研究中心.
    [45] L. Muscuso, S. Cravanzola, F. Cesano, D. Scarano, A. Zecchina, The Journal of Physical Chemistry C 2015, 119, 3791.
    [46] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, S. I. Khondaker, Nanoscale 2014, 6, 10033.
    [47] B. Cho, J. Yoon, S. K. Lim, A. R. Kim, D. H. Kim, S. G. Park, J. D. Kwon, Y. J. Lee, K. H. Lee, B. H. Lee, H. C. Ko, M. G. Hahm, ACS Appl Mater Interfaces 2015, 7, 16775.
    [48] H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, RSC Adv. 2015, 5, 79593.
    [49] K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G. S. Duesberg, Adv Mater 2013, 25, 6699.
    [50] D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, C. N. R. Rao, ACS Nano 2013, 4879.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE