| 研究生: |
吳明恆 Wu, Ming-Heng |
|---|---|
| 論文名稱: |
血纖維蛋白溶酶原片段基因對黑色素瘤的治療效果 Gene Therapy For Melanoma by Plasminogen fragments |
| 指導教授: |
林銘德
Lin, Ming T. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 血纖維蛋白溶酶原 |
| 外文關鍵詞: | plasminogen |
| 相關次數: | 點閱:53 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管新生是從已存在的血管生長出新血管的過程,在正常的組織生長過程以及許多的致病機轉,它都扮演了很重要的角色,惡性腫瘤的生長,也必須經由新生血管來供應養分及氧氣,它也提供了腫瘤向外侵犯及轉移的管道。因此,利用抑制血管新生是一種治療癌症的方法。血管靜止蛋白是一種血管新生抑制物,它是血纖維蛋白溶酶原的內部片段,帶有前四個kringle domains,在我們實驗室之前的研究發現三個血纖維蛋白溶酶原片段K320-351(K3333), K420-436(K4418), 和K420-448(K4430)是具有潛力的血管新生抑制物,它們比K420-461 (K1-4) (angiostatin)更能夠抑制內皮細胞的增生及移動。為了要探討這些片段對腫瘤生長的影響,所以將這些不同的片段構築在反轉錄病毒載體中並用以處理動物,從實驗中發現到帶有K4418 反轉錄病毒載體抑制腫瘤生長的能力較其它片段好,除此之外,接受K4418 和K1-4反轉錄病毒载體治療的小鼠腫瘤,血管密度也較低。為了加強抗癌效果,我們增加K4418 反轉錄病毒載體劑量,結果顯示連續打入七劑的平均腫瘤體積小於不作處理或打入三劑的組別。另外也評估是否在早期打入反轉錄病毒載體會有更好的效果,為了這目的,帶有K4418 反轉錄病毒載體在腫瘤細胞植入老鼠後隔天打入,每兩天一劑共五劑,從結果中發現在早期治療(腫瘤細胞植入老鼠後隔天打入)的腫瘤體積小於晚期治療的組別(在腫瘤細胞植入老鼠後五到七天治療)。腺衛星病毒是個有效率且可長期表現基因的載體,已被廣泛的使用在多種動物模式及人類臨床試驗,所以我們使用帶有K4418的腺衛星病毒載體做治療,結果打入K4418的腺衛星病毒載體也能夠有效的抑制黑色素瘤的生長。近年來,因為已經有許多報導指出利用合併各種療法可以得到更好的療效,而且我們之前的研究顯示rSPE B (Streptoccal Pyrogenic Exotoxin B)能夠誘發B16F10細胞(小鼠黑色素瘤細胞)產生細胞凋亡的現象,所以我們也想了解結合K4418 反轉錄病毒載體和rSPE B的治療成效如何,從實驗結果中發現合併治療效果的確比單一種治療好。總結來說,K4418治療黑色素瘤的效果確實比K1-4(angiostatin)好,利用合併抑制血管新生和使細胞凋亡藥物的療法也的確可以增加療效。
Angiogenesis, the formation of new capillary blood vessels from pre-existing vessels, is important in many physiological processes of tissue growth and in a broad spectrum of pathologies. It is essential to supply oxygen and nutrients for tumor growth, invasion, and metastasis. Therefore, inhibition of tumor angiogenesis is a good strategy for treating cancers. Angiostatin, an internal fragment of plasminogen which contains the first four kringle domains, is an endogenous angiogenic inhibitor. In our laboratory, we have previously found that three plasminogen fragments, K320-351(K3333), K420-436(K4418), and K420-448(K4430) are potent angiogenic inhibitors. They exhibited greater anti-migration and anti-proliferation activities than K420-461 (K1-4) (angiostatin). In order to investigate the effect of these plasminogen fragments on tumor growth in vivo, retroviral vectors expressing these fragments were constructed and used for therapy. In this study, injection of K4418 retroviral vector inhibited tumor growth more than the others. Besides, tumors from animal receiving K4418 and K1-4 retroviral vectors showed reduced microvessel density. To enhence the anti-tumor efficacy, numbers of injection of K4418 retroviral vector were increased. The results showed that the average tumor volume was reduced by injection for consecutive seven days, compared to no treatment or three-times injection. In addition, it was evaluated whether the injection of retroviral vector at early-stage could have greater effect. For this aim, K4418 retroviral vector was injected a day after tumor implantation and continued on every two days for five times. It was found that the tumors injected in the early-stage were smaller than injected 5-7 days after tumor inoculation. Since AAV vectors have been efficient used for long-term gene delivery in many animal models as well as human trials, an AAV vector carrying K4418 gene was used for therapy. The result showed that injection of an K4418 AAV vector also effectively suppresses melanoma growth. Recently, it has been shown that cocktail treatment may have a better therapy efficacy. Our preliminary data showed that rSPE B could induce apoptosis in B16F10 cell, so the effect of the combination of K4418 retroviral vector and rSPE B treatment was also evaluated. Tumors were smaller in combinational treatment compared with K4418 retroviral vector or rSPE B treatment alone. In summary, this study demonstrated that K4418 exhibited greater therapeutic effect on melanoma than angiostatin (K1-4). Combination of anti-angiogenesis and pro-apoptotic agents can increase cancer therapy efficacy.
Ambs, S., Dennis, S., Fairman, J., Wright, M., and Papkoff, J. (1999). Inhibition of tumor growth correlates with the expression level of a human angiostatin transgene in transfected B16F10 melanoma cells. Cancer Res 59, 5773-5777.
Ausprunk, D. H., and Folkman, J. (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14, 53-65.
Baum, B. J., Goldsmith, C. M., Kok, M. R., Lodde, B. M., van Mello, N. M., Voutetakis, A., Wang, J., Yamano, S., and Zheng, C. (2003). Advances in vector-mediated gene transfer. Immunol Lett 90, 145-149.
Boehm, T., Folkman, J., Browder, T., and O'Reilly, M. S. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404-407.
Bohach, G. A., Hauser, A. R., and Schlievert, P. M. (1988). Cloning of the gene, speB, for streptococcal pyrogenic exotoxin type B in Escherichia coli. Infect Immun 56, 1665-1667.
Brinkmann, U., Keppler-Hafkemeyer, A., and Hafkemeyer, P. (2001). Recombinant immunotoxins for cancer therapy. Expert Opin Biol Ther 1, 693-702.
Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem Sci 22, 251-256.
Cao, Y. (2001). Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 33, 357-369.
Cao, Y., Chen, A., An, S. S., Ji, R. W., Davidson, D., and Llinas, M. (1997). Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272, 22924-22928.
Cao, Y., Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., O'Reilly, M. S., Llinas, M., and Folkman, J. (1996). Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 271, 29461-29467.
Cao, Y., O'Reilly, M. S., Marshall, B., Flynn, E., Ji, R. W., and Folkman, J. (1998). Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest 101, 1055-1063.
Cao, Y., and Xue, L. (2004). Angiostatin. Semin Thromb Hemost 30, 83-93.
Cillo, C., Dick, J. E., Ling, V., and Hill, R. P. (1987). Generation of drug-resistant variants in metastatic B16 mouse melanoma cell lines. Cancer Res 47, 2604-2608.
Claesson-Welsh, L., Welsh, M., Ito, N., Anand-Apte, B., Soker, S., Zetter, B., O'Reilly, M., and Folkman, J. (1998). Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci U S A 95, 5579-5583.
Drixler, T. A., Rinkes, I. H., Ritchie, E. D., van Vroonhoven, T. J., Gebbink, M. F., and Voest, E. E. (2000). Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res 60, 1761-1765.
Eriksson, K., Magnusson, P., Dixelius, J., Claesson-Welsh, L., and Cross, M. J. (2003). Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536, 19-24.
Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27-31.
Folkman, J. (2001). Angiogenesis-dependent diseases. Semin Oncol 28, 536-542.
Folkman, J., and Haudenschild, C. (1980). Angiogenesis in vitro. Nature 288, 551-556.
Folkman, J., and Shing, Y. (1992). Angiogenesis. J Biol Chem 267, 10931-10934.
Gould, D. J., and Favorov, P. (2003). Vectors for the treatment of autoimmune disease. Gene Ther 10, 912-927.
Gross, J. L., Moscatelli, D., and Rifkin, D. B. (1983). Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci U S A 80, 2623-2627.
Gupta, N., Nodzenski, E., Khodarev, N. N., Yu, J., Khorasani, L., Beckett, M. A., Kufe, D. W., and Weichselbaum, R. R. (2001). Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2, 536-540.
Gyorffy, S., Palmer, K., Podor, T. J., Hitt, M., and Gauldie, J. (2001). Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol 166, 6212-6217.
Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364.
Hauser, A. R., and Schlievert, P. M. (1990). Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J Bacteriol 172, 4536-4542.
Hughes, R. M. (2004). Strategies for cancer gene therapy. J Surg Oncol 85, 28-35.
Ji, W. R., Castellino, F. J., Chang, Y., Deford, M. E., Gray, H., Villarreal, X., Kondri, M. E., Marti, D. N., Llinas, M., Schaller, J., et al. (1998). Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J 12, 1731-1738.
Jiang, L., Jha, V., Dhanabal, M., Sukhatme, V. P., and Alper, S. L. (2001). Intracellular Ca(2+) signaling in endothelial cells by the angiogenesis inhibitors endostatin and angiostatin. Am J Physiol Cell Physiol 280, C1140-1150.
Kapur, V., Majesky, M. W., Li, L. L., Black, R. A., and Musser, J. M. (1993a). Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A 90, 7676-7680.
Kapur, V., Topouzis, S., Majesky, M. W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M., and Musser, J. M. (1993b). A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 15, 327-346.
Karavodin, L. M., Robbins, J., Chong, K., Hsu, D., Ibanez, C., Mento, S., Jolly, D., and Fong, T. C. (1998). Generation of a systemic antitumor response with regional intratumoral injections of interferon gamma retroviral vector. Hum Gene Ther 9, 2231-2241.
Klagsbrun, M., and Moses, M. A. (1999). Molecular angiogenesis. Chem Biol 6, R217-224.
Kootstra, N. A., and Verma, I. M. (2003). Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 43, 413-439.
Kuo, C. F., Wu, J. J., Lin, K. Y., Tsai, P. J., Lee, S. C., Jin, Y. T., Lei, H. Y., and Lin, Y. S. (1998). Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect Immun 66, 3931-3935.
Liu, Y., Cheung, L. H., Hittelman, W. N., and Rosenblum, M. G. (2003). Targeted delivery of human pro-apoptotic enzymes to tumor cells: In vitro studies describing a novel class of recombinant highly cytotoxic agents. Mol Cancer Ther 2, 1341-1350.
Monack, D. M., Raupach, B., Hromockyj, A. E., and Falkow, S. (1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 93, 9833-9838.
Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J., and Pizzo, S. V. (2001). Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 98, 6656-6661.
Moser, T. L., Stack, M. S., Asplin, I., Enghild, J. J., Hojrup, P., Everitt, L., Hubchak, S., Schnaper, H. W., and Pizzo, S. V. (1999). Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 96, 2811-2816.
Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996). The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70, 5701-5705.
Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T., and Ota, M. (1994). Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can J Microbiol 40, 930-936.
O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Cao, Y., Moses, M., Lane, W. S., Sage, E. H., and Folkman, J. (1994a). Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59, 471-482.
O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994b). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328.
Redlitz, A., Daum, G., and Sage, E. H. (1999). Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res 36, 28-34.
Reiter, Y. (2001). Recombinant immunotoxins in targeted cancer cell therapy. Adv Cancer Res 81, 93-124.
Sharma, M. R., Tuszynski, G. P., and Sharma, M. C. (2004). Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem 91, 398-409.
Sim, B. K., O'Reilly, M. S., Liang, H., Fortier, A. H., He, W., Madsen, J. W., Lapcevich, R., and Nacy, C. A. (1997). A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res 57, 1329-1334.
Tanaka, T., Cao, Y., Folkman, J., and Fine, H. A. (1998). Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 58, 3362-3369.
Tarui, T., Majumdar, M., Miles, L. A., Ruf, W., and Takada, Y. (2002). Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem 277, 33564-33570.
Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O., and Holmgren, L. (2001). Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152, 1247-1254.
Zychlinsky, A., Prevost, M. C., and Sansonetti, P. J. (1992). Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167-169.