簡易檢索 / 詳目顯示

研究生: 李建勳
Lee, Chen-Hsung
論文名稱: 全靜脈營養相關之高三酸甘油脂症與胰島素阻抗的相關性
The Association of Total Parenteral Nutrition-related Hypertriglyceridemia and Insulin Resistance
指導教授: 高愛文
Kao, Ai-Wen
高雅慧
Yang, Yea-Huei Kao
吳英湘
Wu, Ying-Hsiang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 175
中文關鍵詞: 胰島素阻抗高三酸甘油脂症全靜脈營養
外文關鍵詞: hypertriglyceridemia, adiponectin, total parenteral nutrition, insulin resistance
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:
    高三酸甘油脂症(hypertriglyceridemia,HTG)是全靜脈營養(total parenteral nutrition,TPN)常見的併發症。TPN-associated HTG的危險因子包括:敗血症、腎衰竭、胰臟炎、脂肪乳劑劑量、corticosteroid使用、heparin使用和血糖值>10mmol/L。TPN-associated HTG之致病機轉以及其對病患預後的影響目前仍不清楚。胰島素阻抗患者常伴隨著血脂異常,如三酸甘油脂(triglyceride,TG)過高和高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDL-C)過低。本研究利用修改自homeostasis model assessment(HOMA)insulin resistance index(HOMA-IR)的評估方式和adiponectin評估胰島素阻抗程度,藉以探討TPN-associated HTG與胰島素阻抗的相關性。此外,本研究更進一步探討TPN-associated HTG和病患預後的相關性。

    方法:
    本研究收納2006年1月至6月間於國立成大醫院所有TPN成人患者且葡萄糖使用<2.5mg/kg實際體重/分鐘之患者41位。排除使用胰島素和somatostatin患者共8位。給予葡萄糖2.5mg/kg實際體重/分鐘(停用脂肪乳劑與胺基酸製劑)4小時以上後,測其血糖、胰島素和adiponectin濃度。利用HOMA-IR公式計算胰島素阻抗指數。全靜脈營養期間總熱量與蛋白質依據病患營養狀況調整並控制脂肪佔總熱量20~30%。觀察並紀錄生化檢驗值、死亡事件、感染事件、住院天數、呼吸器使用天數與併發症事件。

    結果:
    研究對象主要診斷包括大腸直腸癌、胃癌、胰臟癌和子宮頸癌等,多數為癌症患者(22/33),其中又以腸胃道癌症佔多數(15/22)。在所有的研究對象中,TPN使用前TG與胰島素阻抗指數、adiponectin無顯著相關(r=0.172,p=0.391;r=-0.149,p=0.417)。TPN使用期間,最大TG和平均TG也與胰島素阻抗指數和adiponectin無顯著相關(TGmax & IR r=0.209,p=0.376;TGmax & adiponectin r=-0.153,p=0.464;TGmean & IR r=0.276,p=0.238;TGmean & adiponectin r=-0.017,p=0.934)。胰島素阻抗或hypoadiponectinemia患者中,TG 無顯著改變(p=0.126;p=0.260),如圖一。
    使用TPN期間, TG與肝功能(γGT)有顯著相關(r=0.376,p=0.009)。利用TG最大值100mg/dL將病患分為三組:隨著TG最大值增加,病患住院天數也有顯著增加;三組患者在死亡率、感染率等其他併發症事件、手術併發症事件上皆無顯著差異,如表二、表三。TG最大值與住院天數有顯著相關(n=18,r=0.522,p=0.026),特別是疾病嚴重程度較低(APACHE II 10~15)之重症患者(n=5,r=0.893,p=0.041);TG最大值和TG平均值與死亡率、感染率和敗血症皆無顯著相關性。 此外,HDL-C與感染率和住院天數相關(OR=0.906,p=0.029;r=-0.648,p=0.001);三酸甘油脂<100 mg/dL患者死亡率也有增加的趨勢(p=0.608)。

    討論與結論:
    本研究所使用的胰島素阻抗評估方式可能同時反映肝臟和肌肉胰島素敏感度;adiponectin可能反映脂肪組織胰島素敏感度。本研究發現TPN-associated HTG與胰島素阻抗無直接的相關性,樣本數不足、所使用的評估方式無法反映影響三酸甘油脂代謝的作用部位胰島素敏感度皆為可能的原因。此外,基因和發炎反應也可能是其他導致TPN-associated HTG的因素。感染或發炎期間,細菌內毒素或細胞介素能抑制脂肪細胞、心肌細胞、肌肉細胞和肝臟細胞peroxisome proliferators-activated receptor(PPAR)-α、β/δ、γ和farnesoid X receptor(FXR)等轉錄因子,進而影響三酸甘油脂代謝。Fibrate類降血脂藥物的臨床試驗也顯示:主要透過活化PPAR-α,Fibrate類降血脂藥物能降低三酸甘油脂血中濃度,但不影響胰島素敏感度。這些證據支持其他影響PPAR-α的因素,如基因和發炎反應,可能是導致TPN-associated HTG更直接的原因。此外,研究也顯示過低的HDL-C和TG也可能與較差的病患預後相關。過低的三酸甘油脂血中濃度可能與營養不良有關。本研究樣本數不足和高度研究對象異質性是主要的研究限制。未來可針對這些限制進行更多的研究,如針對手術、重症或癌症惡病質患者等。此外,是否積極胰島素治療或fish oil-based脂肪乳劑降低三酸甘油脂血中濃度能進一步改善住院天數等病患預後?未來仍需更多研究證實。

    Background: Hypertriglyceridemia (HTG) is a common metabolic complication of total parenteral nutrition (TPN). Risk factors of TPN-related HTG include sepsis, renal failure, pancreatitis, dose of lipid emulsion, use of corticosteroid, use of heparin, and hyperglycemia. The mechanism and the impact on clinical outcomes of TPN-related HTG remain unknown. Dyslipidemia, such as HTG and low high-density lipoprotein cholesterol (HDL-C), is a common feature in insulin resistance. Therefore, it is aimed to study the association between TPN-related HTG and insulin resistance.

    Method: This study included all the adult TPN patients from January to June, 2006. The patients who use insulin and somatostatin were excluded. Before TPN, we give 2.5 mg/kg actural body weight/day glucose infusion for more than 4 hours and assess glucose, insulin, adiponectin. Insulin resistance index is calculated by HOMA-IR formula. During TPN, the ratio of fat calories to total calories was controlled within 20~30%. The laboratory data and clinical outcomes, including mortality and morbidity episodes, were recorded.

    Results: The main diagnosis of study participants included colorectal, gastric, pancreatic, cervical cancer, and so on. Majority of them were cancer patients (22/33), especially gastrointestinal cancer patients(15/22). Before TPN, triglyceride was not significantly associated with insulin resistance index and adiponectin (r=0.172, p=0.391; r=-0.149, p=0.417). During TPN, maximum TG levels and mean TG levels were also not significantly associated with insulin resistance index and adiponectin (TGmax & IR r=0.209, p=0.376; TGmax & adiponectin r=-0.153, p=0.464; TGmean & IR r=0.276, p=0.238; TGmean & adiponectin r=-0.017, p=0.934). In patients with insulin resistance (IR < 4.0) and hypoadiponectinemia (adiponectin < 25 mg/L), TG during TPN did not differ from patients without insulin resistance and hypoadiponectinemia (p=0.126; p=0.260).
    During TPN, TG levels were associated with liver function (γGT; r=0.376, p=0.009). As to the association of hypertriglyceridemia with clinical outcome, we grouped patients into 3 groups by TGmax interval of 100 mg/dL. Patients within higher tertile of maximum TG levels had longer the length of hospital stay, but other clinical outcomes, including mortality, morbidity and complication rates, did not differ between these three groups. Maximum TG levels were associated with the length of hospital stay (n=18, r=0.522, p=0.026), especially less severe critically ill patients (APACHE II score 10~15; n=5, r=0.893, p=0.041). Maximum TG levels and mean TG levels were also not significantly associated with mortality rate, infection rate, and sepsis incidence. In addition, HDL-C were associated with infection rate and the length of hospital stay (OR=0.906, p=0.029; r=-0.648, p=0.001). Patients in the lowest tertile of maximum TG levels had higher but not statistically significant mortality rate (p=0.608).

    Discussion and Conclusion: Insulin resistance index by the modified method in this study may reflect the insulin sensitivity in liver and muscle concomitantly; and adiponectin may reflect insulin sensitivity in adipose tissue. In this study, insulin resistance index are not associated with adiponectin, which maybe reflect the dissociation between insulin sensitivities in these tissue. In this study, TPN-related HTG is not associated with insulin resistance. Small sample size and ineffective insulin resistance indicators may be the possible explantations. In addition, gene and inflammation may also be the other facors affecting TPN-related HTG. In addition, low HDL-C and TG may be associated with worse clinical outcome. lower TG levels may be associated with malnutrition. Small sample size and high patient heterogeneity are the main limitations in this study.

    中文摘要........................................................IV 誌謝............................................................VII 目錄............................................................VIII 表目錄..........................................................XIII 圖目錄..........................................................XV 縮寫一覽表......................................................XVI 第一篇 全靜脈營養相關之高三酸甘油脂症與胰島素阻抗的相關性......1 第一章 研究背景................................................1 第二章 文獻回顧................................................3 第一節 胰島素阻抗..............................................3 1.1 胰島素受器及訊息傳遞路徑...................................3 1.2 胰島素與糖質代謝...........................................3 1.3 胰島素與脂質代謝...........................................4 1.4 胰島素阻抗之分子機轉.......................................5 第二節 代謝症候群(胰島素阻抗症候群)..........................7 2.1 肥胖.......................................................7 2.1.1 脂肪組織.................................................7 2.1.2 Randle Hypothesis........................................8 2.1.3 Ectopic Fat Storage Syndrome.............................9 2.1.4 Adipose Tissue as an Endocrine Organ.....................10 2.2 Peroxisome proliferator-activacted receptor γ(PPARγ).....15 2.2.1 PPARγ結構、功能與組織分佈................................15 2.2.2 Thiazolidinediones(TZDs)...............................17 2.3 AMP-activated protein kinase...............................19 2.3.1 Leptin & AMPK............................................19 2.3.2 Adiponectin & AMPK.......................................20 2.3.3 Effect of glucose & insulin on AMPK......................20 2.3.4 Role of AMPK in glucose homeostasis......................21 2.3.5 Metformin & AMPK.........................................22 2.3.6 Thiazolidinediones & AMPK................................22 第三節 高三酸甘油脂症..........................................27 3.1 糖尿病血脂異常.............................................27 3.1.1 Triglyceride-rich lipoproteins(TRLs)之異質性...........27 3.1.2 糖尿病血脂異常(diabetic dyslipidemia)之機轉............28 3.1.3 飯後脂血症(postprandial lipemia).......................31 3.1.4 小型緻密低密度脂蛋白(small, dense LDL).................32 3.1.5 低高密度脂蛋白膽固醇(low HDL-C)........................34 3.2 感染、敗血症與發炎反應.....................................36 3.2.1 TG和VLDL代謝改變.........................................36 3.3.2 Nuclear hormone receptors & lipid metabolism.............37 3.3.3 脂蛋白的保護作用.........................................40 3.3 靜脈營養相關之高三酸甘油脂症...............................43 第四節 靜脈營養製劑與高三酸甘油脂症............................50 4.1 脂肪乳劑...................................................50 4.1.1 物化性質與代謝...........................................50 4.1.2 免疫調節作用.............................................52 4.1.3 MCT/LCT..................................................54 4.1.4 Olive oil-based lipid emulsion...........................55 4.1.5 Fish oil-based lipid emulsion............................56 4.1.6 Multiple oil-based lipid emulsion........................57 第五節 胰島素敏感度的評估......................................67 5.1 空腹胰島素.................................................67 5.2 The Minimal Model..........................................67 5.3 Hyperinsulinaemic-Euglycemic Clamp.........................68 5.4 HOMA和CGIMA................................................68 5.5 Adiponectin................................................70 5.6 空腹血糖異常和葡萄糖不耐症.................................72 5.6.1 胰島素敏感度與胰島素分泌(方法學觀點)...................72 5.6.2 IFG與IGT之胰島素敏感度...................................73 第六節 重症患者之胰島素阻抗與胰島素治療........................78 6.1 重症患者之胰島素阻抗和高血糖...............................78 6.2 積極胰島素治療之臨床療效...................................79 6.3 積極胰島素治療之機轉.......................................80 6.4 胰島素治療之抗糖質毒性作用.................................81 6.5 胰島素治療之抗脂質毒性作用.................................84 6.6 胰島素治療之同化作用.......................................84 6.7 胰島素治療之抗發炎作用.....................................85 6.8 胰島素治療預防內皮細胞功能不全和凝血病變...................85 6.9 胰島素治療之抗細胞凋亡作用.................................86 第三章 研究目的................................................87 第四章 研究方法................................................88 第一節 研究設計................................................88 1.1 研究類型...................................................88 1.2 研究時間、地點與研究對象...................................88 1.3 排除條件...................................................88 第二節 研究流程................................................88 第三節 各變項與評估指標之意義..................................91 3.1 各變項之定義...............................................91 3.2 評估指標...................................................92 3.3 胰島素阻抗評估.............................................92 第四節 統計方法................................................93 4.1 統計模式設定...............................................93 4.2 資料分析方法...............................................93 4.3 資料管理軟體與統計分析軟體.................................95 第五章 研究結果................................................96 第一節 高三酸甘油脂、胰島素阻抗與adiponectin相關性.............96 1.1 病患基本資料...............................................96 1.2 TPN使用前影響TG、胰島素阻抗和adiponectin之相關因子.........97 1.3 TPN期間血脂改變............................................97 1.4 影響TPN期間TG的預測因子....................................98 第二節 三酸甘油脂、胰島素阻抗和adiponectin與病患預後...........107 2.1 所有研究對象...............................................107 2.2 手術患者次分析.............................................108 2.3 APACHE II 10~15患者次分析..................................108 第六章 討論....................................................121 第一節 胰島素敏感度:肝臟、肌肉或脂肪組織.....................121 第二節 高三酸甘油脂症與胰島素阻抗之相關性......................125 第三節 三酸甘油脂症與病患預後之相關性..........................127 第四節 高密度脂蛋白與病患預後之相關性..........................129 第五節 低三酸甘油脂症與病患預後之相關性........................130 第六節 研究限制與未來方向......................................130 第二篇 臨床服務................................................133 第一章 目的....................................................133 第二章 方法....................................................133 第三章 結果....................................................134 第一節 藥事服務記錄............................................134 第二節 案例報告-腹部腔室症候群患者之嚴重腹瀉...................134 參考文獻........................................................148 附錄 人體試驗委員會同意臨床試驗證明書...........................174 自述............................................................175

    1. Btaiche IF, Khalidi N. Metabolic complications of parenteral nutrition in adults, part 1. Am J Health Syst Pharm 2004;61(18):1938-49.
    2. Llop J, Sabin P, Garau M, et al. The importance of clinical factors in parenteral nutrition-associated hypertriglyceridemia. Clin Nutr 2003;22(6):577-83.
    3. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003;46(6):733-49.
    4. Khovidhunkit W, Kim MS, Memon RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004;45(7):1169-96.
    5. Karhapaa P, Uusitupa M, Voutilainen E, Laakso M. Effects of bezafibrate on insulin sensitivity and glucose tolerance in subjects with combined hyperlipidemia. Clin Pharmacol Ther 1992;52(6):620-6.
    6. Whitelaw DC, Smith JM, Nattrass M. Effects of gemfibrozil on insulin resistance to fat metabolism in subjects with type 2 diabetes and hypertriglyceridaemia. Diabetes Obes Metab 2002;4(3):187-94.
    7. Vuorinen-Markkola H, Yki-Jarvinen H, Taskinen MR. Lowering of triglycerides by gemfibrozil affects neither the glucoregulatory nor antilipolytic effect of insulin in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993;36(2):161-9.
    8. Khalidi N, Btaiche I, Kovacevich D. The parenteral and enteral nutrition manual. 8th ed. Ann Arbor, MI: University of Michigan Health System; 2003.
    9. Heyland DK, MacDonald S, Keefe L, Drover JW. Total parenteral nutrition in the critically ill patient: a meta-analysis. Jama 1998;280(23):2013-9.
    10. Perioperative total parenteral nutrition in surgical patients. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. N Engl J Med 1991;325(8):525-32.
    11. Malmberg K, Norhammar A, Wedel H, Ryden L. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999;99(20):2626-32.
    12. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001;345(19):1359-67.
    13. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab 2002;87(3):978-82.
    14. Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. Jama 2003;290(15):2041-7.
    15. Wasmuth HE, Kunz D, Graf J, et al. Hyperglycemia at admission to the intensive care unit is associated with elevated serum concentrations of interleukin-6 and reduced ex vivo secretion of tumor necrosis factor-alpha. Crit Care Med 2004;32(5):1109-14.
    16. Malmberg K. Role of insulin-glucose infusion in outcomes after acute myocardial infarction: the diabetes and insulin-glucose infusion in acute myocardial infarction (DIGAMI) study. Endocr Pract 2004;10 Suppl 2:13-6.
    17. Furnary AP, Gao G, Grunkemeier GL, et al. Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 2003;125(5):1007-21.
    18. Allard JP. Other disease associations with non-alcoholic fatty liver disease (NAFLD). Best Pract Res Clin Gastroenterol 2002;16(5):783-95.
    19. Mesotten D, Swinnen JV, Vanderhoydonc F, Wouters PJ, Van den Berghe G. Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 2004;89(1):219-26.
    20. Kitamura T, Kahn CR, Accili D. Insulin receptor knockout mice. Annu Rev Physiol 2003;65:313-32.
    21. Gems D, Partridge L. Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev 2001;11(3):287-92.
    22. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003;299(5611):1346-51.
    23. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414(6865):799-806.
    24. Yki-Jarvinen H, Young AA, Lamkin C, Foley JE. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest 1987;79(6):1713-9.
    25. Katz A, Nyomba BL, Bogardus C. No accumulation of glucose in human skeletal muscle during euglycemic hyperinsulinemia. Am J Physiol 1988;255(6 Pt 1):E942-5.
    26. Fink RI, Wallace P, Brechtel G, Olefsky JM. Evidence that glucose transport is rate-limiting for in vivo glucose uptake. Metabolism 1992;41(8):897-902.
    27. Butler PC, Kryshak EJ, Marsh M, Rizza RA. Effect of insulin on oxidation of intracellularly and extracellularly derived glucose in patients with NIDDM. Evidence for primary defect in glucose transport and/or phosphorylation but not oxidation. Diabetes 1990;39(11):1373-80.
    28. Yki-Jarvinen H, Sahlin K, Ren JM, Koivisto VA. Localization of rate-limiting defect for glucose disposal in skeletal muscle of insulin-resistant type I diabetic patients. Diabetes 1990;39(2):157-67.
    29. Rothman DL, Shulman RG, Shulman GI. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 1992;89(4):1069-75.
    30. Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med 1999;341(4):248-57.
    31. Coordt MC, Ruhe RC, McDonald RB. Aging and insulin secretion. Proc Soc Exp Biol Med 1995;209(3):213-22.
    32. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997;89(3):331-40.
    33. Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 1998;273(1):215-21.
    34. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005;365(9467):1333-46.
    35. Andreelli F, Jacquier D, Troy S. Molecular aspects of insulin therapy in critically ill patients. Curr Opin Clin Nutr Metab Care 2006;9(2):124-30.
    36. Wild SH, Byrne CD. The Global Burden of the Metabolic Syndrome and its Consequences for Diabetes and Cardiovascular Disease. In: Wild S, Byrne C, eds. The Metabolic Syndrome. Chichester: John Wiley & Sons Ltd; 2005:1-41.
    37. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37(12):1595-607.
    38. WHO Consultation. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complication, Part 1: Diagnosis and Classification of Diabetes Mellitus. In; 1999; Geneva: WHO; 1999.
    39. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 1999;16(5):442-3.
    40. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama 2001;285(19):2486-97.
    41. McTernan PG, Anwar A, Kumar S. Relationship between fat distribution and insulin resistance. In: S; K, S OR, eds. Insulin Resistance: Insulin Action and Its Disturbances in Disease. Chichester: John Wiley & Sons Ltd.; 2005:207-35.
    42. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest 1983;72(5):1737-47.
    43. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785-9.
    44. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr 1987;45(1 Suppl):277-82.
    45. Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired adipsin expression in genetic and acquired obesity. Science 1987;237(4813):405-8.
    46. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372(6505):425-32.
    47. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89(6):2548-56.
    48. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83(7):1263-71.
    49. Lee GH, Proenca R, Montez JM, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379(6566):632-5.
    50. Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84(3):491-5.
    51. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003;24(3):278-301.
    52. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270(45):26746-9.
    53. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996;271(18):10697-703.
    54. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996;221(2):286-9.
    55. Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem (Tokyo) 1996;120(4):803-12.
    56. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003;26(8):2442-50.
    57. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423(6941):762-9.
    58. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003;148(3):293-300.
    59. Kinlaw WB, Marsh B. Adiponectin and HIV-lipodystrophy: taking HAART. Endocrinology 2004;145(2):484-6.
    60. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002;8(7):731-7.
    61. Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002;277(29):25863-6.
    62. Combs TP, Pajvani UB, Berg AH, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 2004;145(1):367-83.
    63. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990;347(6294):645-50.
    64. Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med 1999;16(3):179-92.
    65. Semple RK, Chatterjee VK, O'Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest 2006;116(3):581-9.
    66. Ye JM, Dzamko N, Cleasby ME, et al. Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia 2004;47(7):1306-13.
    67. Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001;50(9):2094-9.
    68. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002;25(2):376-80.
    69. Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M. Expanding role of AMPK in endocrinology. Trends Endocrinol Metab 2006;17(5):205-15.
    70. Samaha FF, Szapary PO, Iqbal N, et al. Effects of rosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome. Arterioscler Thromb Vasc Biol 2006;26(3):624-30.
    71. Syvanne M, Rosseneu M, Labeur C, Hilden H, Taskinen MR. Enrichment with apolipoprotein E characterizes postprandial TG-rich lipoproteins in patients with non-insulin-dependent diabetes mellitus and coronary artery disease: a preliminary report. Atherosclerosis 1994;105(1):25-34.
    72. Tannock LR, Olin KL, Barrett PH, Wight TN, Chait A. Triglyceride-rich lipoproteins from subjects with type 2 diabetes do not demonstrate increased binding to biglycan, a vascular proteoglycan. J Clin Endocrinol Metab 2002;87(1):35-40.
    73. Malmstrom R, Packard CJ, Watson TD, et al. Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler Thromb Vasc Biol 1997;17(7):1454-64.
    74. Lewis GF, Uffelman KD, Szeto LW, Steiner G. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes 1993;42(6):833-42.
    75. Bioletto S, Golay A, Munger R, Kalix B, James RW. Acute hyperinsulinemia and very-low-density and low-density lipoprotein subfractions in obese subjects. Am J Clin Nutr 2000;71(2):443-9.
    76. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002;23(2):201-29.
    77. Malmstrom R, Packard CJ, Caslake M, et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 1998;47(5):779-87.
    78. Malmstrom R, Packard CJ, Caslake M, et al. Effect of heparin-stimulated plasma lipolytic activity on VLDL APO B subclass metabolism in normal subjects. Atherosclerosis 1999;146(2):381-90.
    79. Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000;49(5):749-58.
    80. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 2001;50(8):1844-50.
    81. Clark JM, Diehl AM. Hepatic steatosis and type 2 diabetes mellitus. Curr Diab Rep 2002;2(3):210-5.
    82. Anderson RA, Jones CJ, Goodfellow J. Is the fatty meal a trigger for acute coronary syndromes. Atherosclerosis 2001;159(1):9-15.
    83. de Bont N, Netea MG, Demacker PN, Kullberg BJ, van der Meer JW, Stalenhoef AF. Apolipoprotein E-deficient mice have an impaired immune response to Klebsiella pneumoniae. Eur J Clin Invest 2000;30(9):818-22.
    84. Vinnars E, Hammarqvist F. 25th Arvid Wretlind's Lecture--Silver anniversary, 25 years with ESPEN, the history of nutrition. Clin Nutr 2004;23(5):955-62.
    85. Vinnars E, Wilmore D. Jonathan Roads Symposium Papers. History of parenteral nutrition. JPEN J Parenter Enteral Nutr 2003;27(3):225-31.
    86. Hansen LM, Hardie BS, Hidalgo J. Fat emulsion for intravenous administration: clinical experience with intralipid 10%. Ann Surg 1976;184(1):80-8.
    87. Vandenplas Y, Leyssens L, Bougatef A, Sacre L, Francois B. Fatty acid patterns in parenterally fed premature and term infants: changes induced by intralipid and sunflower seed oil. Am J Perinatol 1989;6(4):393-6.
    88. Wretlind A. Development of fat emulsions. JPEN J Parenter Enteral Nutr 1981;5(3):230-5.
    89. Jarstrand C, Berghem L, Lahnborg G. Human granulocyte and reticuloendothelial system function during intralipid infusion. JPEN J Parenter Enteral Nutr 1978;2(5):663-70.
    90. Nordenstrom J, Jarstrand C, Wiernik A. Decreased chemotactic and random migration of leukocytes during Intralipid infusion. Am J Clin Nutr 1979;32(12):2416-22.
    91. Strunk RC, Payne CM, Nagle RB, Kunke K. Alteration of the structure and function of guinea pig peritoneal macrophages by a soybean oil emulsion. Am J Pathol 1979;96(3):753-70.
    92. Waitzberg DL, Torrinhas RS, Jacintho TM. New parenteral lipid emulsions for clinical use. JPEN J Parenter Enteral Nutr 2006;30(4):351-67.
    93. Carpentier YA, Dupont IE. Advances in intravenous lipid emulsions. World J Surg 2000;24(12):1493-7.
    94. Williams CM, Bateman PA, Jackson KG, Yaqoob P. Dietary fatty acids and chylomicron synthesis and secretion. Biochem Soc Trans 2004;32(Pt 1):55-8.
    95. Ferezou J, Bach AC. Structure and metabolic fate of triacylglycerol- and phospholipid-rich particles of commercial parenteral fat emulsions. Nutrition 1999;15(1):44-50.
    96. Hajri T, Ferezou J, Lutton C. Effects of intravenous infusions of commercial fat emulsions (Intralipid 10 or 20%) on rat plasma lipoproteins: phospholipids in excess are the main precursors of lipoprotein-X-like particles. Biochim Biophys Acta 1990;1047(2):121-30.
    97. Correia MI, Guimaraes J, de Mattos LC, Gurgel KC, Cabral EB. Peripheral parenteral nutrition: an option for patients with an indication for short-term parenteral nutrition. Nutr Hosp 2004;19(1):14-8.
    98. Smirniotis V, Kotsis TE, Antoniou S, et al. Incidence of vein thrombosis in peripheral intravenous nutrition: effect of fat emulsions. Clin Nutr 1999;18(2):79-81.
    99. Calder PC, Yaqoob P, Harvey DJ, Watts A, Newsholme EA. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem J 1994;300 (Pt 2):509-18.
    100. Kinsella JE. Lipids, membrane receptors, and enzymes: effects of dietary fatty acids. JPEN J Parenter Enteral Nutr 1990;14(5 Suppl):200S-17S.
    101. Rode HN, Szamel M, Schneider S, Resch K. Phospholipid metabolism of stimulated lymphocytes. Preferential incorporation of polyunsaturated fatty acids into plasma membrane phospholipid upon stimulation with concanavalin A. Biochim Biophys Acta 1982;688(1):66-74.
    102. Calder PC, Grimble RF. Polyunsaturated fatty acids, inflammation and immunity. Eur J Clin Nutr 2002;56 Suppl 3:S14-9.
    103. Curtis CL, Rees SG, Little CB, et al. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum 2002;46(6):1544-53.
    104. Sanderson P, Calder PC. Dietary fish oil appears to prevent the activation of phospholipase C-gamma in lymphocytes. Biochim Biophys Acta 1998;1392(2-3):300-8.
    105. Poynter ME, Daynes RA. Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 1998;273(49):32833-41.
    106. Baillie RA, Takada R, Nakamura M, Clarke SD. Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: a mechanism for decreased body fat deposition. Prostaglandins Leukot Essent Fatty Acids 1999;60(5-6):351-6.
    107. Mascaro C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D. Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 1998;273(15):8560-3.
    108. Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem 1994;269(29):18767-72.
    109. Fan YY, McMurray DN, Ly LH, Chapkin RS. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr 2003;133(6):1913-20.
    110. Stulnig TM, Huber J, Leitinger N, et al. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem 2001;276(40):37335-40.
    111. Calder PC, Bond JA, Harvey DJ, Gordon S, Newsholme EA. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis. Biochem J 1990;269(3):807-14.
    112. Halvorsen DS, Hansen JB, Grimsgaard S, Bonaa KH, Kierulf P, Nordoy A. The effect of highly purified eicosapentaenoic and docosahexaenoic acids on monocyte phagocytosis in man. Lipids 1997;32(9):935-42.
    113. Kew S, Gibbons ES, Thies F, McNeill GP, Quinlan PT, Calder PC. The effect of feeding structured triacylglycerols enriched in eicosapentaenoic or docosahexaenoic acids on murine splenocyte fatty acid composition and leucocyte phagocytosis. Br J Nutr 2003;90(6):1071-80.
    114. Palombo JD, DeMichele SJ, Boyce PJ, et al. Effect of short-term enteral feeding with eicosapentaenoic and gamma-linolenic acids on alveolar macrophage eicosanoid synthesis and bactericidal function in rats. Crit Care Med 1999;27(9):1908-15.
    115. Virella G, Kilpatrick JM, Rugeles MT, Hyman B, Russell R. Depression of humoral responses and phagocytic functions in vivo and in vitro by fish oil and eicosapentanoic acid. Clin Immunol Immunopathol 1989;52(2):257-70.
    116. Adolph M. Lipid emulsions in parenteral nutrition: state of the art and future perspectives. Clin Nutr 2001;20(suppl 4):S11-S4.
    117. Grimm H, Kraus A. Immunonutrition--supplementary amino acids and fatty acids ameliorate immune deficiency in critically ill patients. Langenbecks Arch Surg 2001;386(5):369-76.
    118. Grimm H, Tibell A, Norrlind B, Blecher C, Wilker S, Schwemmle K. Immunoregulation by parenteral lipids: impact of the n-3 to n-6 fatty acid ratio. JPEN J Parenter Enteral Nutr 1994;18(5):417-21.
    119. Morlion BJ, Torwesten E, Wrenger K, Puchstein C, Furst P. What is the optimum w-3 to w-6 fatty acid ratio of parenteral lipid emulsions in postoperative trauma? Clin Nutr 1997;16(suppl 2):S49.
    120. Cukier C, Waitzberg DL, Logullo AF, et al. Lipid and lipid-free total parenteral nutrition: differential effects on macrophage phagocytosis in rats. Nutrition 1999;15(11-12):885-9.
    121. Hamawy KJ, Moldawer LL, Georgieff M, et al. The Henry M. Vars Award. The effect of lipid emulsions on reticuloendothelial system function in the injured animal. JPEN J Parenter Enteral Nutr 1985;9(5):559-65.
    122. Jensen GL, Mascioli EA, Seidner DL, et al. Parenteral infusion of long- and medium-chain triglycerides and reticuloendothelial system function in man. JPEN J Parenter Enteral Nutr 1990;14(5):467-71.
    123. Sedman PC, Ramsden CW, Brennan TG, Guillou PJ. Pharmacological concentrations of lipid emulsions inhibit interleukin-2-dependent lymphocyte responses in vitro. JPEN J Parenter Enteral Nutr 1990;14(1):12-7.
    124. Sobrado J, Moldawer LL, Pomposelli JJ, et al. Lipid emulsions and reticuloendothelial system function in healthy and burned guinea pigs. Am J Clin Nutr 1985;42(5):855-63.
    125. Pironi L, Guidetti M, Zolezzi C, et al. Peroxidation potential of lipid emulsions after compounding in all-in-one solutions. Nutrition 2003;19(9):784-8.
    126. Muhlebach SF, Steger PJ. Lipid peroxidation of intravenous fat emulsions: a pharmaceutical issue with clinical impact? Nutrition 1998;14(9):720-1.
    127. DuPont HL, Lehan P. Memorial. Harper K. Hellems, M.D. 1920-1999. Trans Am Clin Climatol Assoc 2002;113:liv-lvi.
    128. Hardy G, Allwood MC. Oxidation of intravenous lipid emulsions. Nutrition 1997;13(3):230.
    129. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J 1992;288 (Pt 2):341-4.
    130. Steger PJ, Muhlebach SF. Lipid peroxidation of i.v. lipid emulsions in TPN bags: the influence of tocopherols. Nutrition 1998;14(2):179-85.
    131. Hathcock JN, Azzi A, Blumberg J, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr 2005;81(4):736-45.
    132. Steger PJ, Muhlebach SF. In vitro oxidation of i.v. lipid emulsions in different all-in-one admixture bags assessed by an iodometric assay and gas-liquid chromatography. Nutrition 1997;13(2):133-40.
    133. Grimble RF. Fatty acids profile of modern lipid emulsions: scientific considerations for creating the ideal composition. Clin Nutr 2005;1(suppl):S9-S15.
    134. Ulrich H, Pastores SM, Katz DP, Kvetan V. Parenteral use of medium-chain triglycerides: a reappraisal. Nutrition 1996;12(4):231-8.
    135. Manuel-y-Keenoy B, Nonneman L, De Bosscher H, et al. Effects of intravenous supplementation with alpha-tocopherol in patients receiving total parenteral nutrition containing medium- and long-chain triglycerides. Eur J Clin Nutr 2002;56(2):121-8.
    136. Radermacher P, Santak B, Strobach H, Schror K, Tarnow J. Fat emulsions containing medium chain triglycerides in patients with sepsis syndrome: effects on pulmonary hemodynamics and gas exchange. Intensive Care Med 1992;18(4):231-4.
    137. Wanten GJ, Curfs JH, Meis JF, Naber AH. Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions. JPEN J Parenter Enteral Nutr 2001;25(1):9-13.
    138. Wanten GJ, Geijtenbeek TB, Raymakers RA, et al. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation. JPEN J Parenter Enteral Nutr 2000;24(4):228-33.
    139. Grau T, Ruiz de Adana JC, Zubillaga S, Fuerte S, Giron C. [Randomized study of two different fat emulsions in total parenteral nutrition of malnourished surgical patients;effect of infectious morbidity and mortality]. Nutr Hosp 2003;18(3):159-66.
    140. Jiang ZM, Zhang SY, Wang XR, Yang NF, Zhu Y, Wilmore D. A comparison of medium-chain and long-chain triglycerides in surgical patients. Ann Surg 1993;217(2):175-84.
    141. Lai H, Chen W. Effects of medium-chain and long-chain triacylglycerols in pediatric surgical patients. Nutrition 2000;16(6):401-6.
    142. Waitzberg DL, Bellinati-Pires R, Salgado MM, et al. Effect of total parenteral nutrition with different lipid emulsions of human monocyte and neutrophil functions. Nutrition 1997;13(2):128-32.
    143. Smyrniotis VE, Kostopanagiotou GG, Arkadopoulos NF, et al. Long-chain versus medium-chain lipids in acute pancreatitis complicated by acute respiratory distress syndrome: effects on pulmonary hemodynamics and gas exchange. Clin Nutr 2001;20(2):139-43.
    144. Fan ST, Wong J. Metabolic clearance of a fat emulsion containing medium-chain triglycerides in cirrhotic patients. JPEN J Parenter Enteral Nutr 1992;16(3):279-83.
    145. Ball MJ. Parenteral nutrition in the critically ill: use of a medium chain triglyceride emulsion. Intensive Care Med 1993;19(2):89-95.
    146. Jeevanandam M, Holaday NJ, Voss T, Buier R, Petersen SR. Efficacy of a mixture of medium-chain triglyceride (75%) and long-chain triglyceride (25%) fat emulsions in the nutritional management of multiple-trauma patients. Nutrition 1995;11(3):275-84.
    147. Smirniotis V, Kostopanagiotou G, Vassiliou J, et al. Long chain versus medium chain lipids in patients with ARDS: effects on pulmonary haemodynamics and gas exchange. Intensive Care Med 1998;24(10):1029-33.
    148. Wanten GJ, Naber AH, Kruimel JW, Tool AT, Roos D, Jansen JB. Influence of structurally different lipid emulsions on human neutrophil oxygen radical production. Eur J Clin Invest 1999;29(4):357-63.
    149. Lindgren BF, Ruokonen E, Magnusson-Borg K, Takala J. Nitrogen sparing effect of structured triglycerides containing both medium-and long-chain fatty acids in critically ill patients; a double blind randomized controlled trial. Clin Nutr 2001;20(1):43-8.
    150. Bellantone R, Bossola M, Carriero C, et al. Structured versus long-chain triglycerides: a safety, tolerance, and efficacy randomized study in colorectal surgical patients. JPEN J Parenter Enteral Nutr 1999;23(3):123-7.
    151. Chambrier C, Guiraud M, Gibault JP, Labrosse H, Bouletreau P. Medium- and long-chain triacylglycerols in postoperative patients: structured lipids versus a physical mixture. Nutrition 1999;15(4):274-7.
    152. Kruimel JW, Naber TH, van der Vliet JA, Carneheim C, Katan MB, Jansen JB. Parenteral structured triglyceride emulsion improves nitrogen balance and is cleared faster from the blood in moderately catabolic patients. JPEN J Parenter Enteral Nutr 2001;25(5):237-44.
    153. Sandstrom R, Hyltander A, Korner U, Lundholm K. Structured triglycerides were well tolerated and induced increased whole body fat oxidation compared with long-chain triglycerides in postoperative patients. JPEN J Parenter Enteral Nutr 1995;19(5):381-6.
    154. Goulet O, de Potter S, Antebi H, et al. Long-term efficacy and safety of a new olive oil-based intravenous fat emulsion in pediatric patients: a double-blind randomized study. Am J Clin Nutr 1999;70(3):338-45.
    155. Reimund JM, Rahmi G, Escalin G, et al. Efficacy and safety of an olive oil-based intravenous fat emulsion in adult patients on home parenteral nutrition. Aliment Pharmacol Ther 2005;21(4):445-54.
    156. Thomas-Gibson S, Jawhari A, Atlan P, Brun AL, Farthing M, Forbes A. Safe and efficacious prolonged use of an olive oil-based lipid emulsion (ClinOleic) in chronic intestinal failure. Clin Nutr 2004;23(4):697-703.
    157. Virella G, Fourspring K, Hyman B, et al. Immunosuppressive effects of fish oil in normal human volunteers: correlation with the in vitro effects of eicosapentanoic acid on human lymphocytes. Clin Immunol Immunopathol 1991;61(2 Pt 1):161-76.
    158. Kremer JM, Lawrence DA, Jubiz W, et al. Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical and immunologic effects. Arthritis Rheum 1990;33(6):810-20.
    159. Linos A, Kaklamanis E, Kontomerkos A, et al. The effect of olive oil and fish consumption on rheumatoid arthritis--a case control study. Scand J Rheumatol 1991;20(6):419-26.
    160. Granato D, Blum S, Rossle C, Le Boucher J, Malnoe A, Dutot G. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. JPEN J Parenter Enteral Nutr 2000;24(2):113-8.
    161. Reimund JM, Scheer O, Muller CD, Pinna G, Duclos B, Baumann R. In vitro modulation of inflammatory cytokine production by three lipid emulsions with different fatty acid compositions. Clin Nutr 2004;23(6):1324-32.
    162. Garcia-de-Lorenzo A, Denia R, Atlan P, et al. Parenteral nutrition providing a restricted amount of linoleic acid in severely burned patients: a randomised double-blind study of an olive oil-based lipid emulsion v. medium/long-chain triacylglycerols. Br J Nutr 2005;94(2):221-30.
    163. Gobel Y, Koletzko B, Bohles HJ, et al. Parenteral fat emulsions based on olive and soybean oils: a randomized clinical trial in preterm infants. J Pediatr Gastroenterol Nutr 2003;37(2):161-7.
    164. Linseisen J, Hoffmann J, Lienhard S, Jauch KW, Wolfram G. Antioxidant status of surgical patients receiving TPN with an omega-3-fatty acid-containing lipid emulsion supplemented with alpha-tocopherol. Clin Nutr 2000;19(3):177-84.
    165. Cleland LG, French JK, Betts WH, Murphy GA, Elliott MJ. Clinical and biochemical effects of dietary fish oil supplements in rheumatoid arthritis. J Rheumatol 1988;15(10):1471-5.
    166. Katz DP, Manner T, Furst P, Askanazi J. The use of an intravenous fish oil emulsion enriched with omega-3 fatty acids in patients with cystic fibrosis. Nutrition 1996;12(5):334-9.
    167. Mayer K, Gokorsch S, Fegbeutel C, et al. Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. Am J Respir Crit Care Med 2003;167(10):1321-8.
    168. Mozaffarian D, Ascherio A, Hu FB, et al. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 2005;111(2):157-64.
    169. Shahar E, Folsom AR, Melnick SL, et al. Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. Atherosclerosis Risk in Communities Study Investigators. N Engl J Med 1994;331(4):228-33.
    170. Zadak Z, Cervinkova Z. PUFA n-3 lipid emulsion--a promising agent in ARDS treatment. Nutrition 1997;13(3):232-3.
    171. Jho DH, Babcock TA, Tevar R, Helton WS, Espat NJ. Eicosapentaenoic acid supplementation reduces tumor volume and attenuates cachexia in a rat model of progressive non-metastasizing malignancy. JPEN J Parenter Enteral Nutr 2002;26(5):291-7.
    172. Rose DP, Connolly JM. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr Cancer 2000;37(2):119-27.
    173. Wigmore SJ, Barber MD, Ross JA, Tisdale MJ, Fearon KC. Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer. Nutr Cancer 2000;36(2):177-84.
    174. Wigmore SJ, Fearon KC, Maingay JP, Ross JA. Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 1997;92(2):215-21.
    175. Qi K, Seo T, Al-Haideri M, et al. Omega-3 triglycerides modify blood clearance and tissue targeting pathways of lipid emulsions. Biochemistry 2002;41(9):3119-27.
    176. Furst P, Kuhn KS. Fish oil emulsions: what benefits can they bring? Clin Nutr 2000;19(1):7-14.
    177. Heller AR, Fischer S, Rossel T, et al. Impact of n-3 fatty acid supplemented parenteral nutrition on haemostasis patterns after major abdominal surgery. Br J Nutr 2002;87 Suppl 1:S95-101.
    178. Mayer K, Meyer S, Reinholz-Muhly M, et al. Short-time infusion of fish oil-based lipid emulsions, approved for parenteral nutrition, reduces monocyte proinflammatory cytokine generation and adhesive interaction with endothelium in humans. J Immunol 2003;171(9):4837-43.
    179. Heller AR, Rossel T, Gottschlich B, et al. Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients. Int J Cancer 2004;111(4):611-6.
    180. Morlion BJ, Torwesten E, Lessire H, et al. The effect of parenteral fish oil on leukocyte membrane fatty acid composition and leukotriene-synthesizing capacity in patients with postoperative trauma. Metabolism 1996;45(10):1208-13.
    181. Roulet M, Frascarolo P, Pilet M, Chapuis G. Effects of intravenously infused fish oil on platelet fatty acid phospholipid composition and on platelet function in postoperative trauma. JPEN J Parenter Enteral Nutr 1997;21(5):296-301.
    182. Schauder P, Rohn U, Schafer G, Korff G, Schenk HD. Impact of fish oil enriched total parenteral nutrition on DNA synthesis, cytokine release and receptor expression by lymphocytes in the postoperative period. Br J Nutr 2002;87 Suppl 1:S103-10.
    183. Tsekos E, Reuter C, Stehle P, Boeden G. Perioperative administration of parenteral fish oil supplements in a routine clinical setting improves patient outcome after major abdominal surgery. Clin Nutr 2004;23(3):325-30.
    184. Weiss G, Meyer F, Matthies B, Pross M, Koenig W, Lippert H. Immunomodulation by perioperative administration of n-3 fatty acids. Br J Nutr 2002;87 Suppl 1:S89-94.
    185. Mayer K, Fegbeutel C, Hattar K, et al. Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation. Intensive Care Med 2003;29(9):1472-81.
    186. Grimminger F, Mayser P, Papavassilis C, et al. A double-blind, randomized, placebo-controlled trial of n-3 fatty acid based lipid infusion in acute, extended guttate psoriasis. Rapid improvement of clinical manifestations and changes in neutrophil leukotriene profile. Clin Investig 1993;71(8):634-43.
    187. Mayser P, Mrowietz U, Arenberger P, et al. Omega-3 fatty acid-based lipid infusion in patients with chronic plaque psoriasis: results of a double-blind, randomized, placebo-controlled, multicenter trial. J Am Acad Dermatol 1998;38(4):539-47.
    188. Schlotzer E, Kanning U. Elimination and tolerance of a new parenteral lipid emulsion (SMOF)--a double-blind cross-over study in healthy male volunteers. Ann Nutr Metab 2004;48(4):263-8.
    189. Genton L, Karsegard VL, Dupertuis YM. Tolerance to a lipid emulsion containing a mixture of soybean, olive, coconut and fish oils compared with a fat emulsion containing only soybean oil. Clin Nutr 2004;23:793.
    190. Antebi H, Mansoor O, Ferrier C, et al. Liver function and plasma antioxidant status in intensive care unit patients requiring total parenteral nutrition: comparison of 2 fat emulsions. JPEN J Parenter Enteral Nutr 2004;28(3):142-8.
    191. Grimm H, Mertes N, Goeters C, et al. Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients. Eur J Nutr 2006;45(1):55-60.
    192. Kuse ER, Kotzerke J, Muller S, Nashan B, Luck R, Jaeger K. Hepatic reticuloendothelial function during parenteral nutrition including an MCT/LCT or LCT emulsion after liver transplantation - a double-blind study. Transpl Int 2002;15(6):272-7.
    193. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens 1998;16(7):895-906.
    194. Karter AJ, Mayer-Davis EJ, Selby JV, et al. Insulin sensitivity and abdominal obesity in African-American, Hispanic, and non-Hispanic white men and women. The Insulin Resistance and Atherosclerosis Study. Diabetes 1996;45(11):1547-55.
    195. Hong Y, Weisnagel SJ, Rice T, et al. Familial resemblance for glucose and insulin metabolism indices derived from an intravenous glucose tolerance test in Blacks and Whites of the HERITAGE Family Study. Clin Genet 2001;60(1):22-30.
    196. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237(3):E214-23.
    197. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28(7):412-9.
    198. Turner RC, Holman RR, Matthews D, Hockaday TD, Peto J. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 1979;28(11):1086-96.
    199. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998;21(12):2191-2.
    200. Wallace TM, Levy JC, Matthews DR. An increase in insulin sensitivity and basal beta-cell function in diabetic subjects treated with pioglitazone in a placebo-controlled randomized study. Diabet Med 2004;21(6):568-76.
    201. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257(1):79-83.
    202. Matsubara M, Maruoka S, Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol 2002;147(2):173-80.
    203. Nishizawa H, Shimomura I, Kishida K, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 2002;51(9):2734-41.
    204. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100(25):2473-6.
    205. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20(6):1595-9.
    206. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001;86(5):1930-5.
    207. Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 2002;87(6):2764-9.
    208. Zoccali C, Mallamaci F, Tripepi G, et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 2002;13(1):134-41.
    209. Hulver MW, Zheng D, Tanner CJ, et al. Adiponectin is not altered with exercise training despite enhanced insulin action. Am J Physiol Endocrinol Metab 2002;283(4):E861-5.
    210. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002;290(3):1084-9.
    211. Delporte ML, Funahashi T, Takahashi M, Matsuzawa Y, Brichard SM. Pre- and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies. Biochem J 2002;367(Pt 3):677-85.
    212. English PJ, Coughlin SR, Hayden K, Malik IA, Wilding JP. Plasma adiponectin increases postprandially in obese, but not in lean, subjects. Obes Res 2003;11(7):839-44.
    213. Karlsson FA, Engstrom BE, Lind L, Ohrvall M. No postprandial increase of plasma adiponectin in obese subjects. Obes Res 2004;12(6):1031-2; author reply 2-4.
    214. Imbeault P, Pomerleau M, Harper ME, Doucet E. Unchanged fasting and postprandial adiponectin levels following a 4-day caloric restriction in young healthy men. Clin Endocrinol (Oxf) 2004;60(4):429-33.
    215. Choi KM, Lee J, Kim DR, et al. Comparison of ADA and WHO criteria for the diagnosis of diabetes in elderly Koreans. Diabet Med 2002;19(10):853-7.
    216. de Vegt F, Dekker JM, Stehouwer CD, Nijpels G, Bouter LM, Heine RJ. The 1997 American Diabetes Association criteria versus the 1985 World Health Organization criteria for the diagnosis of abnormal glucose tolerance: poor agreement in the Hoorn Study. Diabetes Care 1998;21(10):1686-90.
    217. Dunstan DW, Zimmet PZ, Welborn TA, et al. The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care 2002;25(5):829-34.
    218. Gabir MM, Hanson RL, Dabelea D, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000;23(8):1108-12.
    219. Larsson H, Berglund G, Lindgarde F, Ahren B. Comparison of ADA and WHO criteria for diagnosis of diabetes and glucose intolerance. Diabetologia 1998;41(9):1124-5.
    220. Shaw JE, Zimmet PZ, de Courten M, et al. Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care 1999;22(3):399-402.
    221. Unwin N, Shaw J, Zimmet P, Alberti KG. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 2002;19(9):708-23.
    222. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet 1999;354(9179):617-21.
    223. Botas P, Delgado E, Castano G, Diaz de Grenu C, Prieto J, Diaz-Cadorniga FJ. Comparison of the diagnostic criteria for diabetes mellitus, WHO-1985, ADA-1997 and WHO-1999 in the adult population of Asturias (Spain). Diabet Med 2003;20(11):904-8.
    224. Harris MI, Eastman RC, Cowie CC, Flegal KM, Eberhardt MS. Comparison of diabetes diagnostic categories in the U.S. population according to the 1997 American Diabetes Association and 1980-1985 World Health Organization diagnostic criteria. Diabetes Care 1997;20(12):1859-62.
    225. Ko GT, Chan JC, Woo J, Cockram CS. Use of the 1997 American Diabetes Association diagnostic criteria for diabetes in a Hong Kong Chinese population. Diabetes Care 1998;21(12):2094-7.
    226. Sadikot SM, Nigam A, Das S, et al. Comparing the ADA 1997 and the WHO 1999 criteria: Prevalence of Diabetes in India Study. Diabetes Res Clin Pract 2004;66(3):309-15.
    227. Will new diagnostic criteria for diabetes mellitus change phenotype of patients with diabetes? Reanalysis of European epidemiological data. DECODE Study Group on behalf of the European Diabetes Epidemiology Study Group. Bmj 1998;317(7155):371-5.
    228. Qiao Q, Hu G, Tuomilehto J, et al. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 2003;26(6):1770-80.
    229. Qiao Q, Nakagami T, Tuomilehto J, et al. Comparison of the fasting and the 2-h glucose criteria for diabetes in different Asian cohorts. Diabetologia 2000;43(12):1470-5.
    230. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 1985;76(1):149-55.
    231. Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989;38(12):1512-27.
    232. Bergman RN, Prager R, Volund A, Olefsky JM. Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest 1987;79(3):790-800.
    233. Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000;85(7):2402-10.
    234. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22(9):1462-70.
    235. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 1989;38(4):387-95.
    236. Cherrington AD. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 1999;48(5):1198-214.
    237. Matsuda M, DeFronzo RA. Relationship between insulin sensitivity in adipose tissue, liver, muscle, and components of the insulin resistance syndrome. Diabetes 1997;46(Suppl. 1):68A.
    238. Bonora E, Targher G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000;23(1):57-63.
    239. Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes 2006;55(5):1430-5.
    240. Tripathy D, Almgren P, Tuomi T, Groop L. Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. Diabetes Care 2004;27(9):2204-10.
    241. Ferrannini E, Bjorkman O, Reichard GA, Jr., et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 1985;34(6):580-8.
    242. DeFronzo RA, Ferrannini E, Hendler R, Wahren J, Felig P. Influence of hyperinsulinemia, hyperglycemia, and the route of glucose administration on splanchnic glucose exchange. Proc Natl Acad Sci U S A 1978;75(10):5173-7.
    243. Festa A, D'Agostino R, Jr., Hanley AJ, Karter AJ, Saad MF, Haffner SM. Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 2004;53(6):1549-55.
    244. Osei K, Gaillard T, Schuster DP. Pathogenetic mechanisms of impaired glucose tolerance and type II diabetes in African-Americans. The significance of insulin secretion, insulin sensitivity, and glucose effectiveness. Diabetes Care 1997;20(3):396-404.
    245. Wasada T, Kuroki H, Katsumori K, Arii H, Sato A, Aoki K. Who are more insulin resistant, people with IFG or people with IGT? Diabetologia 2004;47(4):758-9.
    246. Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 1999;48(11):2197-203.
    247. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006;29(5):1130-9.
    248. van Haeften TW, Pimenta W, Mitrakou A, et al. Disturbances in beta-cell function in impaired fasting glycemia. Diabetes 2002;51 Suppl 1:S265-70.
    249. Pimenta WP, Santos ML, Cruz NS, Aragon FF, Padovani CR, Gerich JE. Brazilian individuals with impaired glucose tolerance are characterized by impaired insulin secretion. Diabetes Metab 2002;28(6 Pt 1):468-76.
    250. Arslanian SA, Bacha F, Saad R, Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care 2005;28(1):115-9.
    251. Gulli G, Ferrannini E, Stern M, Haffner S, DeFronzo RA. The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes 1992;41(12):1575-86.
    252. Kashyap SR, Belfort R, Berria R, et al. Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol Endocrinol Metab 2004;287(3):E537-46.
    253. Vauhkonen I, Niskanen L, Vanninen E, Kainulainen S, Uusitupa M, Laakso M. Defects in insulin secretion and insulin action in non-insulin-dependent diabetes mellitus are inherited. Metabolic studies on offspring of diabetic probands. J Clin Invest 1998;101(1):86-96.
    254. Lillioja S, Mott DM, Zawadzki JK, et al. In vivo insulin action is familial characteristic in nondiabetic Pima Indians. Diabetes 1987;36(11):1329-35.
    255. Tripathy D, Carlsson M, Almgren P, et al. Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 2000;49(6):975-80.
    256. Abdul-Ghani MA, Sabbah M, Kher J, Minuchin O, Vardi P, Raz I. Different contributions of insulin resistance and beta-cell dysfunction in overweight Israeli Arabs with IFG and IGT. Diabetes Metab Res Rev 2006;22(2):126-30.
    257. Hanefeld M, Koehler C, Fuecker K, Henkel E, Schaper F, Temelkova-Kurktschiev T. Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: the risk factor in Impaired Glucose Tolerance for Atherosclerosis and Diabetes study. Diabetes Care 2003;26(3):868-74.
    258. Davies MJ, Raymond NT, Day JL, Hales CN, Burden AC. Impaired glucose tolerance and fasting hyperglycaemia have different characteristics. Diabet Med 2000;17(6):433-40.
    259. Novoa FJ, Boronat M, Saavedra P, et al. Differences in cardiovascular risk factors, insulin resistance, and insulin secretion in individuals with normal glucose tolerance and in subjects with impaired glucose regulation: the Telde Study. Diabetes Care 2005;28(10):2388-93.
    260. Piche ME, Despres JP, Pascot A, et al. Impaired fasting glucose vs. glucose intolerance in pre-menopausal women: distinct metabolic entities and cardiovascular disease risk? Diabet Med 2004;21(7):730-7.
    261. Snehalatha C, Ramachandran A, Sivasankari S, Satyavani K, Vijay V. Insulin secretion and action show differences in impaired fasting glucose and in impaired glucose tolerance in Asian Indians. Diabetes Metab Res Rev 2003;19(4):329-32.
    262. Carnevale Schianca GP, Rossi A, Sainaghi PP, Maduli E, Bartoli E. The significance of impaired fasting glucose versus impaired glucose tolerance: importance of insulin secretion and resistance. Diabetes Care 2003;26(5):1333-7.
    263. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest 2004;114(9):1187-95.
    264. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338(6):347-54.
    265. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001;344(10):699-709.
    266. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345(19):1368-77.
    267. Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol 1995;26(1):57-65.
    268. Krinsley JS. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 2004;79(8):992-1000.
    269. Van den Berghe G, Wouters PJ, Bouillon R, et al. Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Crit Care Med 2003;31(2):359-66.
    270. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 2005;64(8):1348-53.
    271. Mesotten D, Delhanty PJ, Vanderhoydonc F, et al. Regulation of insulin-like growth factor binding protein-1 during protracted critical illness. J Clin Endocrinol Metab 2002;87(12):5516-23.
    272. Donmoyer CM, Chen SS, Lacy DB, et al. Infection impairs insulin-dependent hepatic glucose uptake during total parenteral nutrition. Am J Physiol Endocrinol Metab 2003;284(3):E574-82.
    273. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 2005;365(9453):53-9.
    274. Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 1999;67(2):352-60; discussion 60-2.
    275. Pozzilli P, Leslie RD. Infections and diabetes: mechanisms and prospects for prevention. Diabet Med 1994;11(10):935-41.
    276. Rassias AJ, Marrin CA, Arruda J, Whalen PK, Beach M, Yeager MP. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg 1999;88(5):1011-6.
    277. Nielson CP, Hindson DA. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes 1989;38(8):1031-5.
    278. Perner A, Nielsen SE, Rask-Madsen J. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med 2003;29(4):642-5.
    279. Rayfield EJ, Ault MJ, Keusch GT, Brothers MJ, Nechemias C, Smith H. Infection and diabetes: the case for glucose control. Am J Med 1982;72(3):439-50.
    280. Black CT, Hennessey PJ, Andrassy RJ. Short-term hyperglycemia depresses immunity through nonenzymatic glycosylation of circulating immunoglobulin. J Trauma 1990;30(7):830-2; discussion 2-3.
    281. Weekers F, Giulietti AP, Michalaki M, et al. Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology 2003;144(12):5329-38.
    282. Carpentier YA, Scruel O. Changes in the concentration and composition of plasma lipoproteins during the acute phase response. Curr Opin Clin Nutr Metab Care 2002;5(2):153-8.
    283. Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 2000;181 Suppl 3:S462-72.
    284. Lanza-Jacoby S, Wong SH, Tabares A, Baer D, Schneider T. Disturbances in the composition of plasma lipoproteins during gram-negative sepsis in the rat. Biochim Biophys Acta 1992;1124(3):233-40.
    285. Gordon BR, Parker TS, Levine DM, et al. Low lipid concentrations in critical illness: implications for preventing and treating endotoxemia. Crit Care Med 1996;24(4):584-9.
    286. Feingold KR, Krauss RM, Pang M, Doerrler W, Jensen P, Grunfeld C. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J Clin Endocrinol Metab 1993;76(6):1423-7.
    287. Tulenko TN, Sumner AE. The physiology of lipoproteins. J Nucl Cardiol 2002;9(6):638-49.
    288. Harris HW, Grunfeld C, Feingold KR, Rapp JH. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest 1990;86(3):696-702.
    289. Harris HW, Grunfeld C, Feingold KR, et al. Chylomicrons alter the fate of endotoxin, decreasing tumor necrosis factor release and preventing death. J Clin Invest 1993;91(3):1028-34.
    290. Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. Faseb J 1994;8(1):43-53.
    291. Mesotten D, Wouters PJ, Peeters RP, et al. Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab 2004;89(7):3105-13.
    292. Hansen TK, Thiel S, Wouters PJ, Christiansen JS, Van den Berghe G. Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab 2003;88(3):1082-8.
    293. Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001;86(7):3257-65.
    294. Das UN. Is insulin an antiinflammatory molecule? Nutrition 2001;17(5):409-13.
    295. Opie L. The glucose hypothesis: relation to acute myocardial ischemia. J Mol Cell Cardiol 1970;1:107-14.
    296. Gao F, Gao E, Yue TL, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105(12):1497-502.
    297. Jonassen AK, Aasum E, Riemersma RA, Mjos OD, Larsen TS. Glucose-insulin-potassium reduces infarct size when administered during reperfusion. Cardiovasc Drugs Ther 2000;14(6):615-23.
    298. Jonassen AK, Sack MN, Mjos OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001;89(12):1191-8.
    299. Phillips SA, Ciaraldi TP, Kong AP, et al. Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 2003;52(3):667-74.
    300. Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 2004;53(8):2169-76.
    301. Putz DM, Goldner WS, Bar RS, Haynes WG, Sivitz WI. Adiponectin and C-reactive protein in obesity, type 2 diabetes, and monodrug therapy. Metabolism 2004;53(11):1454-61.
    302. Jung HS, Youn BS, Cho YM, et al. The effects of rosiglitazone and metformin on the plasma concentrations of resistin in patients with type 2 diabetes mellitus. Metabolism 2005;54(3):314-20.
    303. van Wijk JP, de Koning EJ, Cabezas MC, et al. Comparison of rosiglitazone and metformin for treating HIV lipodystrophy: a randomized trial. Ann Intern Med 2005;143(5):337-46.
    304. Wareham NJ, Brage S, Franks PW, Abbott RA. Physical Activity and Insulin Resistance. In: Kumer S, O'Rahilly S, eds. Insulin Resistance: Insulin Action and Its Disturbances in Disease. Chichester: John, Wiley & Sons, Ltd; 2005:p317-p99.
    305. Boudou P, Sobngwi E, Mauvais-Jarvis F, Vexiau P, Gautier JF. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men. Eur J Endocrinol 2003;149(5):421-4.
    306. Ballantyne GH, Gumbs A, Modlin IM. Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin. Obes Surg 2005;15(5):692-9.
    307. Abbasi F, Lamendola C, McLaughlin T, Hayden J, Reaven GM, Reaven PD. Plasma adiponectin concentrations do not increase in association with moderate weight loss in insulin-resistant, obese women. Metabolism 2004;53(3):280-3.
    308. Jones IR, Swai A, Taylor R, Miller M, Laker MF, Alberti KG. Lowering of plasma glucose concentrations with bezafibrate in patients with moderately controlled NIDDM. Diabetes Care 1990;13(8):855-63.
    309. Lintott CJ, Scott RS, Sutherland WHF, Bremer JM, Shand BI, Frampton CM. Comparison of simvastatin vs. gemfibrozil therapy on lipid, glycemic and homorheological parameters in type II diabetes mellitus. Diab Nutr Metab 1992;5:183-9.
    310. Eisalo A, Manninen V, Malkonen M. Interactions between tolbutamide and gemfibrozil or clofibrate in chemical diabetes. Res Clin Forums 1982;4:105-10.
    311. Marks J, Howard AN. A comparative study of gemfibrozil and clofibrate in the treatment of hyperlipidemia in patients with maturity-onset diabetes. Res Clin Forums 1982;4:95-102.
    312. Shen DC, Fuh MM, Shieh SM, Chen YD, Reaven GM. Effect of gemfibrozil treatment in sulfonylurea-treated patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1991;73(3):503-10.
    313. Ruotolo G, Bavenholm P, Brismar K, et al. Serum insulin-like growth factor-I level is independently associated with coronary artery disease progression in young male survivors of myocardial infarction: beneficial effects of bezafibrate treatment. J Am Coll Cardiol 2000;35(3):647-54.
    314. Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 2000;278(3):704-11.
    315. Hale PJ, Black E, Nattrass M. Metabolic effects of low-dose incremental insulin infusion in diabetic man. Horm Metab Res 1986;18(2):129-33.
    316. Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 2003;26(5):1513-7.
    317. Galban C, Montejo JC, Mesejo A, et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 2000;28(3):643-8.
    318. Barton RG. Immune-enhancing enteral formulas: are they beneficial in critically ill patients? Nutr Clin Pract 1997;12(2):51-62.
    319. Barbul A. Immunonutrition comes of age. Crit Care Med 2000;28(3):884-5.
    320. Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med 1999;27(12):2799-805.
    321. Heys SD, Walker LG, Smith I, Eremin O. Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg 1999;229(4):467-77.
    322. Aberegg SK. Intensive insulin therapy in the medical ICU. N Engl J Med 2006;354(19):2069-71; author reply -71.
    323. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int 2003;63(3):793-808.
    324. Sugrue M. Abdominal compartment syndrome. Curr Opin Crit Care 2005;11(4):333-8.
    325. Bradley SE, Bradley GP. The Effect Of Increased Intra-Abdominal Pressure On Renal Function In Man. J Clin Invest 1947;26(5):1010-22.
    326. Jorgensen JO, Lalak NJ, North L, Hanel K, Hunt DR, Morris DL. Venous stasis during laparoscopic cholecystectomy. Surg Laparosc Endosc 1994;4(2):128-33.
    327. Sugrue M, Jones F, Lee A, et al. Intraabdominal pressure and gastric intramucosal pH: is there an association? World J Surg 1996;20(8):988-91.
    328. DeMeo M, Kolli S, Keshavarzian A, et al. Beneficial effect of a bile acid resin binder on enteral feeding induced diarrhea. Am J Gastroenterol 1998;93(6):967-71.
    329. Brinson RR, Kolts BE. Hypoalbuminemia as an indicator of diarrheal incidence in critically ill patients. Crit Care Med 1987;15(5):506-9.

    下載圖示 校內:2008-01-11公開
    校外:2008-01-11公開
    QR CODE