| 研究生: |
劉子菱 Liu, Zih-Ling |
|---|---|
| 論文名稱: |
遇缺補貨型馬可夫存貨模式與解法發展 Optimal Design of a Markovian (s, Q) Inventory System with Backorder |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 馬可夫存貨模式 、遇缺補貨 、前置時間 、啟發式解法 |
| 外文關鍵詞: | (s, Q) inventory model, Markov chain, expected cost, heuristics |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對遇缺補貨型存貨問題發展馬可夫期望成本模式與求解方法,其中考慮再訂購點與固定訂購數量存貨政策,即如當期期末存貨量小於或等於再訂購點時,即訂購固定數量,並於固定前置時間後到達,反之則不訂購,當存貨量小於零時,即發生缺貨,須待補貨後才能優先補足,此模式考慮離散時間,故與古典連續時間之再訂購點與訂購數量存貨模式不同。本研究建立之期望成本模式,考慮訂購、存貨,以及遇缺補貨之缺貨成本,並發展有效率之求解方法,可快速求得最佳或近似最佳再訂購點與訂購數量。
在本論文所建立之馬可夫存貨模式中,考慮隨機需求與不同補貨前置時間,首先根據馬可夫性質建立存貨轉移機率矩陣與極限機率分配,再利用極限機率發展單位時間期望總成本模式。而後針對成本模式進行分析,當在期末訂貨,可於下一期期初到貨時,發現在兩存貨政策中如訂購數量固定,只有再訂購點變動時,兩政策之極限機率俱對等關係,且當訂購數量固定時,其單位時間期望總成本為再訂購點之凸函數。為確認模式之精確性,並以模擬實驗進行分析與比較。
本研究發展兩個適用於求解不同前置時間存貨模式之啟發式演算法,對於期末訂貨,可於下一期期初到貨之問題,主要依據所發現之理論性質首先搜尋再訂購點,再以黃金分割法求得最佳訂購數量,直到期望成本不再改善為止。當在期末訂貨,於下一期之後才能到貨之問題中,則皆以黃金分割法為基礎,進行再訂購點與訂購數量之求解。在總共192組演算實驗中,可求得最佳決策者約佔81.7%,與局部窮舉法比較,其整體平均成本偏差小於0.7%,在求解效率上,兩演算法之平均搜尋次數約為2至4次,顯示演算法之求解品質良好且俱效率。
A markovian (s, Q) inventory problem with backorder is investigated in this thesis, where demand is a random variable over the infinite periods. When the inventory position falls below the reorder point at any period, a fixed quantity of Q is ordered and the replenishment arrives after a constant leadtime. Shortage is backordered and is filled upon restocking. The reorder point and fixed quantity are to be determined to minimize the expected total relevant cost per unit time, which consists of ordering cost, inventory carrying cost and shortage cost.
The (s, Q) inventory problem is formulated as a markovian model. For the basic model where an order placed at the end of one period will arrive at the beginning of next period, an exact analysis is performed. Two properties have been established, and are used to develop an efficient heuristic for finding the optimal (s, Q). An approximate analysis is then performed for the extended model with leadtime greater than one. A 2-D search procedure is developed to find the near optimal (s, Q).
Computational results with 192 instances have shown that the probability of finding optimum policy is approximately 81.7%, and the average deviation of expected cost from those in the local enumeration is less than 0.7%. The average running times for solving an instance are approximately 1 and 28 seconds for the basic and extended models, respectively. It also indicates that the heuristics is robust and efficient.
Ahiska, S. S., Appaji, S. R., King, R. E., Warsing, D. P. (2013). A Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing. International Journal of Production Economics, 144(2), 485-496.
Amiri-Aref, M., Klibi, W., Babai, M. Z. (2018). The multi-sourcing location inventory problem with stochastic demand. European Journal of Operational Research, 266(1), 72-87.
Andersson, J., Melchiors, P. (2001). A two-echelon inventory model with lost sales. International Journal of Production Economics, 69(3), 307-315.
Bazaraa, M. S., Sherali, H.D., Shetty, C.M. (1993). Nonlinear programming theory and algorithms. (2nd ed.). New York : Wiley
Berman, O., Krass, D., Tajbakhsh, M. M. (2012). A coordinated location-inventory model. European Journal of Operational Research, 217(3), 500-508.
Bijvank, M., Johansen, S. G. (2012). Periodic review lost-sales inventory models with compound Poisson demand and constant lead times of any length. European Journal of Operational Research, 220(1), 106-114.
Broekmeulen, R. A. C. M., van Donselaar, K. H. (2009). A heuristic to manage perishable inventory with batch ordering, positive lead-times, and time-varying demand. Computers & Operations Research, 36(11), 3013-3018.
Cunha, L. R. A., Delfino, A. P. S., dos Reis, K. A., Leiras, A. (2018). Economic production quantity (EPQ) model with partial backordering and a discount for imperfect quality batches. International Journal of Production Research, 56(18), 6279-6293.
Dorigo, M., Di Caro, G., Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artif Life, 5(2), 137-172.
Eruguz, A. S., Jemai, Z., Sahin, E., Dallery, Y. (2013). Optimising reorder intervals and order-up-to levels in guaranteed service supply chains. International Journal of Production Research, 52(1), 149-164.
Ehrhard, E. (1979). The power approximation for computing (s, S) inventory policies. Management Science. 25, 777-786.
Fleischmann, M., Kuik, R. (2003). On optimal inventory control with independent stochastic item returns. European Journal of Operational Research, 151(1), 25-37.
Glover, F. (1989). Tabu search – Part I. ORSA Journal on Computing, 1(3):190–206,
Goyal, S. K., Satir, A. T. (1989). Joint replenishment inventory control - deterministic and stochastic-models. European Journal of Operational Research, 38(1), 2-13.
Guerrero, W. J., Yeung, T. G., Guéret, C. (2013). Joint-optimization of inventory policies on a multi-product multi-echelon pharmaceutical system with batching and ordering constraints. European Journal of Operational Research, 231(1), 98-108.
Hooke, R., Jeeves T.A. (1961). “Direct search” solution of numerical and statistical problems. Journal of the ACM, 212–229.
Harris, F.W.,1915,What quantity to make at once. In The Library of Factory Management,Vol. V. Operation and Costs, A.W. Shaw Company, Chicago, 47-52.
Inderfurth, K., Kiesmüller, G. P. (2015). Exact and heuristic linear-inflation policies for an inventory model with random yield and arbitrary lead times. European Journal of Operational Research, 245(1), 109-120.
Jakšič, M., Fransoo, J. C. (2018). Dual sourcing in the age of near-shoring: Trading off stochastic capacity limitations and long lead times. European Journal of Operational Research, 267(1), 150-161.
Johansen, S. G., Hill, R. M. (2000). The (r, Q) control of a periodic-review inventory system with continuous demand and lost sales. International Journal of Production Economics, 68(3), 279-286.
Kouki, C., Jemai, Z., Sahin, E., Dallery, Y. (2013). Analysis of a periodic review inventory control system with perishables having random lifetime. International Journal of Production Research, 52(1), 283-298.
Kennedy J., Eberhart R.C.(1997) A discrete binary version of the particle swarm algorithm. IEEE, 4105, 4104–4108.
Lee, J. E., Hong, Y. (2003). A stock rationing policy in a (s,S)-controlled stochastic production system with 2-phase Coxian processing times and lost sales. International Journal of Production Economics, 83(3), 299-307.
Liu, L. M., Yang, T. (1999). An (s, S) random lifetime inventory model with a positive lead time. European Journal of Operational Research, 113(1), 52-63.
Melchiors, P., Dekker, R., Kleijn, M. J. (2000). Inventory rationing in an (s, Q) inventory model with lost sales and two demand classes. Journal of the Operational Research Society, 51(1), 111-122.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E. (1953), "Equation of state calculations by fast computing machines", Journal of Chemical Physics 21, 1087-1092.
Mohebbi, E. (2003). Supply interruptions in a lost-sales inventory system with random lead time. Computers & Operations Research, 30(3), 411-426.
Mustafa Tanrikulu, M., Şen, A., Alp, O. (2009). A joint replenishment policy with individual control and constant size orders. International Journal of Production Research, 48(14), 4253-4271.
Noblesse, A. M., Boute, R. N., Lambrecht, M. R., Van Houdt, B. (2014). Lot sizing and lead time decisions in production/inventory systems. International Journal of Production Economics, 155, 351-360.
Parlar, M., Perry, D. (1995). Analysis of a (Q,R,T) inventory policy with deterministic and random yields When Future-Supply Is Uncertain. European Journal of Operational Research, 84(2), 431-443.
Rosenbrock, H. H. (1960). "An automatic method for finding the greatest or least Value of a function," The Computer Journal, 3, 175
Silver E.A., Pyke D.F. Peterson R. (1998). Inventory management and production planning and scheduling. (3rd ed.).United States of America: John Wiley & Sons
Salehi, H., Taleizadeh, A. A., Tavakkoli-Moghaddam, R. (2015). An EOQ model with random disruption and partial backordering. International Journal of Production Research, 54(9), 2600-2609.
San-José, L. A., Sicilia, J., Alcaide-López-de-Pablo, D. (2018). An inventory system with demand dependent on both time and price assuming backlogged shortages. European Journal of Operational Research, 270(3), 889-897.
Sapna Isotupa, K. P. (2006). An (s, Q) Markovian inventory system with lost sales and two demand classes. Mathematical and Computer Modelling, 43(7-8), 687-694.
Song, J.-S., Zhang, H., Hou, Y., Wang, M. (2010). The effect of lead time and demand uncertainties in (r, q) inventory systems. Operations Research, 58(1), 68-80.
Taft, E.W., 1918, The most economical production lot. Iron Age, 101, 1410-1412.
van der Laan, E., Dekker, R., Salomon, M., Ridder, A. (1996). An (s,Q) inventory model with remanufacturing and disposal. International Journal of Production Economics, 46, 339-350.
van der Laan, E., Salomon, M. (1997). Production planning and inventory control with remanufacturing and disposal. European Journal of Operational Research, 102(2), 264-278.
Xiang, M., Rossi, R., Martin-Barragan, B., Tarim, S. A. (2018). Computing non-stationary (s, S) policies using mixed integer linear programming. European Journal of Operational Research, 271(2), 490-500.
Yin, K. K., Liu, H., Johnson, N. E. (2002). Markovian inventory policy with application to the paper industry. Computers & Chemical Engineering, 26(10), 1399-1413.
Zhu, H., Liu, X., Chen, Y. (2015). Effective inventory control policies with a minimum order quantity and batch ordering. International Journal of Production Economics, 168, 21-30.
校內:2024-09-02公開